Optimal adaptive finite element and wavelet methods for p-Poisson equations

p-泊松方程的最优自适应有限元和小波方法

基本信息

项目摘要

This project is concerned with the design of adaptive strategies for certain classes of quasilinear problems, in particular p-Poisson equations, their convergence analysis, and the proof of optimality in terms of the number of degrees of freedom and the algebraic complexity, respectively. Our approach is based on an adaptive regularization of so-called Kacanov iterations, whose regularization parameter is tuned according to a posteriori error estimators which have also the function of guiding adaptive discretizations. We shall focus on both, adaptive finite element and wavelet methods.The motivation is twofold: on the one hand, appropriate reliable error estimators for finite element discretizations have already been defined and studied for the p-Poisson equation, and we expect that we will be able to „port“ this knowledge to wavelet methods for which, in this particular problem, reliable error estimators are not yet available. On the other hand, the strong analytical properties of wavelets can usually be exploited to derive more simply and sometimes more rigorously a convergence and optimality analysis for adaptive wavelet schemes compared to finite element approaches; moreover, the understanding of Besov regularity of solutions of any type of known elliptic equations so far considered has been based on the use of wavelets. Let us stress the fact that Besov regularity of solutions is a fundamental issue when it comes to address the rate of convergence or the complexity of both adaptive finite element and wavelet methods. In addition to the analysis of the adaptive methods for p-Poisson equations, we also plan to perform extensive numerical simulations in order to demonstrate the validity of the theoretical results.
本课题主要研究几类拟线性问题的自适应策略的设计,特别是p-Poisson方程的自适应策略的设计、收敛分析以及关于自由度和代数复杂性的最优性证明。我们的方法是基于所谓的Kacanov迭代的自适应正则化,其正则化参数根据具有指导自适应离散的功能的后验误差估计器来调整。我们将同时关注自适应有限元方法和小波方法。动机有两个:一方面,已经为p-Poisson方程定义和研究了适当的有限元离散的可靠误差估计器,我们期望我们能够将这一知识“移植”到小波方法中,对于这个特殊问题,可靠的误差估计器还没有可用的。另一方面,与有限元方法相比,利用小波的强分析性质,通常可以更简单,有时更严格地推导出自适应小波格式的收敛和最优性分析;此外,迄今为止所考虑的任何类型的已知椭圆方程解的Besov正则性的理解都是基于小波的使用。让我们强调这样一个事实,当涉及到自适应有限元和小波方法的收敛速度或复杂性时,解的Besov正则性是一个基本问题。除了分析p-Poisson方程的自适应方法外,我们还计划进行广泛的数值模拟,以证明理论结果的有效性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Stephan Dahlke其他文献

Professor Dr. Stephan Dahlke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Stephan Dahlke', 18)}}的其他基金

Adaptive High-Order Quarklet Frame Methods for Elliptic Operator Equations
椭圆算子方程的自适应高阶 Quarklet 框架方法
  • 批准号:
    451355735
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Research Grants
"New Smoothness Spaces on Domains and Their Discrete Characterization"
“域上的新平滑空间及其离散特征”
  • 批准号:
    373295677
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Regularity Theory of Stochastic Partial Differential Equations in (Quasi-)Banach Spaces
(拟)Banach空间中随机偏微分方程的正则理论
  • 批准号:
    243356303
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive Wavelet and Frame Techniques for Acoustic BEM
声学边界元法的自适应小波和框架技术
  • 批准号:
    223613512
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Koordination des Schwerpunktprogramms "Mathematische Methoden zur Extraktion quantifizierbarer Information aus komplexen Systemen"
协调优先计划“从复杂系统中提取可量化信息的数学方法”
  • 批准号:
    78969336
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive wavelet frame methods for operator equations: Sparse grids, vector-valued spaces and applications to nonlinear inverse parabolic problems
算子方程的自适应小波框架方法:稀疏网格、向量值空间及其在非线性反抛物线问题中的应用
  • 批准号:
    79623579
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive Wavelet Methods for SPDEs
SPDE 的自适应小波方法
  • 批准号:
    79644281
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Adaptive wavelet methods for inverse problems and inverse parabolic equations
反问题和反抛物线方程的自适应小波方法
  • 批准号:
    22812949
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multivariate Wavelet Analysis: Constructions and Specific Applications
多元小波分析:结构和具体应用
  • 批准号:
    5334062
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

下一代无线通信系统自适应调制技术及跨层设计研究
  • 批准号:
    60802033
  • 批准年份:
    2008
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
由蝙蝠耳轮和鼻叶推导新型仿生自适应波束模型的研究
  • 批准号:
    10774092
  • 批准年份:
    2007
  • 资助金额:
    39.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
  • 批准号:
    2208402
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Physics-Preserving Adaptive Finite Element Methods for Thermo-Poroelasticity
合作研究:热多孔弹性的物理保持自适应有限元方法
  • 批准号:
    2208426
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
  • 批准号:
    RGPIN-2022-04190
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Finite-Time Adaptive Control of Nonlinear Systems and Its Applications
非线性系统的有限时间自适应控制及其应用
  • 批准号:
    RGPIN-2017-05367
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Finite-Time Adaptive Control of Nonlinear Systems and Its Applications
非线性系统的有限时间自适应控制及其应用
  • 批准号:
    RGPIN-2017-05367
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
  • 批准号:
    RGPIN-2016-04891
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid Parallel Adaptive Finite Element Analysis and Design for High-Speed Microelectronic System Interconnections
高速微电子系统互连的混合并行自适应有限元分析与设计
  • 批准号:
    RGPIN-2016-04891
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Finite-Time Adaptive Control of Nonlinear Systems and Its Applications
非线性系统的有限时间自适应控制及其应用
  • 批准号:
    RGPIN-2017-05367
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive Finite Element Methods for Flows in Porous Media
多孔介质流动的自适应有限元方法
  • 批准号:
    2281583
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
EAGER: Numerical two-dimensional fluid simulations and finite element analysis to model an adaptive and flexible microplasma discharge system.
EAGER:数值二维流体模拟和有限元分析,用于对自适应且灵活的微等离子体放电系统进行建模。
  • 批准号:
    1917144
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了