Monte Carlo Studies of Random Spin Systems with Complex Structures
复杂结构随机自旋系统的蒙特卡罗研究
基本信息
- 批准号:09640469
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Effects of randomness on phase transitions and critical phenomena are interesting subjects of study. The purpose of the present research project is to investigate random spin systems by using Monte Carlo simulations. We have studied the relation between the phase transition of spin systems and geometric percolation transition, the finite-size scaling (FSS) of spin systems with anisotropic shape, and the phase separation dynamics of complex systems.First, based on the connection between the phase transition of the Ising model and the geometric percolation problem, we have studied the importance of the multiple percolating clusters for anisotropic Ising models. We have applied this idea to the random diluted Ising model, and discussed the crossover from the percolation fixed point to the thermal fixed point.Second, we have investigated the FSS functions for anisotropic Ising models. The anisotropic parameter dependence of FSS functions has been studied. For the anisotropic three-dimensional Ising models, we have obtained a unified view of three-dimensional and two-dimensional FSS, from the analysis of the FSS near the critical temperature of the layered Ising model.Third, we have investigated the phase separation dynamics under shear flow. Developing a new Monte Carlo method to study the phase separation under shear flow based on the spin model of the Kawasaki dynamics, we have discussed the anisotropic growth exponents in the late stage.
随机性对相变和临界现象的影响是有趣的研究课题。本研究的目的是用蒙特卡罗模拟方法研究随机自旋系统。我们研究了自旋系统的相变与几何渗流相变、各向异性形状自旋系统的有限尺寸标度(FSS)以及复杂系统的相分离动力学之间的关系。首先,基于伊辛模型的相变与几何渗流问题之间的联系,我们研究了多个渗流团簇对各向异性伊辛模型的重要性。我们将这一思想应用到随机稀释伊辛模型中,讨论了从渗流不动点到热不动点的交叉。其次,我们研究了各向异性伊辛模型的FSS函数。研究了FSS函数的各向异性参数依赖性。对于各向异性三维伊辛模型,通过对分层伊辛模型临界温度附近的相分离的分析,得到了三维和二维相分离的统一视图。第三,我们研究了剪切流作用下的相分离动力学。基于川崎动力学的自旋模型,发展了一种新的蒙特卡罗方法来研究剪切流作用下的相分离,讨论了后期的各向异性生长指数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yutaka Okabe: "Cluster Analysis of the Ising Model and Universal Finite-Size Scaling"Physica A. (印刷中).
Yutaka Okabe:“伊辛模型的聚类分析和通用有限尺寸缩放”Physica A.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yutaka Okabe: "Application of Monte Carlo method to phase separation dynamics of complex systems (印刷中)"Int. J. Mod. Phys. C. 10・8. (1999)
Yutaka Okabe:“蒙特卡罗方法在复杂系统相分离动力学中的应用(正在出版)”Int. Mod C. 10・8。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuhisa Kaneda: "Effects of shape and boundary conditions on finite-size functions for anisotropic three-dimensional Ising systems"Prog. Theor. Phys. Suppl.. (印刷中).
Kazuhisa Kaneda:“形状和边界条件对各向异性三维 Ising 系统的有限尺寸函数的影响”Prog 理论。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masao Iwamatsu: "Reducing quasi-ergodicity in a double well potential by Tsallis Monte Carlo simulation"Physica A. (印刷中).
Masao Iwamatsu:“通过 Tsallis Monte Carlo 模拟减少双井势中的准遍历性”Physica A.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y. Okabe: "Application of the exchange Monte Carlo method to ordering dynamics"New J. Phys.. 1. 10.1-10.7 (1999)
Y. Okabe:“交换蒙特卡罗方法在有序动力学中的应用”New J. Phys.. 1. 10.1-10.7 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKABE Yutaka其他文献
OKABE Yutaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKABE Yutaka', 18)}}的其他基金
High-performance computing of phase transitions using GPU
使用 GPU 进行相变的高性能计算
- 批准号:
25400406 - 财政年份:2013
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The application of new Monte Carlo methods to the problemof probabilistic image processing
新蒙特卡罗方法在概率图像处理问题中的应用
- 批准号:
21540396 - 财政年份:2009
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on Static and Dynamical Critical Phenomena for Complex Spin Systems Using the Monte Carlo Methods
使用蒙特卡罗方法研究复杂自旋系统的静态和动态临界现象
- 批准号:
18540379 - 财政年份:2006
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of random and quantum spin systems using newly developed Monte Carlo algorithms
使用新开发的蒙特卡罗算法研究随机和量子自旋系统
- 批准号:
15540374 - 财政年份:2003
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of Monte Carlo Methods to Phase Transition Dynamics
蒙特卡罗方法在相变动力学中的应用
- 批准号:
12640379 - 财政年份:2000
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monte Carlo Simulation of Quantum and Random Spin Systems
量子和随机自旋系统的蒙特卡罗模拟
- 批准号:
07640518 - 财政年份:1995
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Monte Carlo Studies on Classical and Quantum Random Spin Systems
经典和量子随机自旋系统的蒙特卡罗研究
- 批准号:
05804017 - 财政年份:1993
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
- 批准号:
23K23403 - 财政年份:2024
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidating subsurface water percolation processes that control the depth of shallow sliding surface on soil-mantled hillslopes
阐明控制土覆盖山坡上浅滑动面深度的地下水渗滤过程
- 批准号:
23KJ1244 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Percolation Theory and Related Topics
渗滤理论及相关主题
- 批准号:
2246494 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Continuing Grant
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
- 批准号:
RGPIN-2019-06103 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Bond percolationゲルによる網目構造と力学物性の相関解明
使用键渗流凝胶阐明网络结构与机械性能之间的相关性
- 批准号:
22H02135 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bootstrap Percolation and Related Processes
Bootstrap 渗透及相关过程
- 批准号:
572362-2022 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
ランダム媒質中の確率モデル 研究課題
随机媒体中的随机模型 研究主题
- 批准号:
22K20344 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Random graphs and percolation processes
随机图和渗透过程
- 批准号:
RGPIN-2016-05949 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual
Utilization of Percolation Theory and Multiphysics' Concept to Develop Dynamic Modeling and Accurate Upscaling Approaches for Two-Phase Flow during Immiscible Displacement of Heavy Oil in Porous Media
利用渗流理论和多物理场概念开发多孔介质中稠油非混相驱替过程中两相流的动态建模和精确放大方法
- 批准号:
RGPIN-2017-06877 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Discovery Grants Program - Individual