Theory of multi-wavelet and its application

多小波理论及其应用

基本信息

  • 批准号:
    09554001
  • 负责人:
  • 金额:
    $ 2.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

The purpose of this research project is to apply wavelet theory to practical problems in thecnology. The theory of wavelet begins in the early eighties, and at the first stage the wavelet thery was constructed only one wavelet functions. So the main concern of the theory was to construct or look for the wavelet function which was appropriate for the applications. However the application of the theory has been extended very rapidly and sometimes we need more than two wavelet functions to develope functions or signals. That is why we investigate the nulti-wavelet theory.First year of this project we investigated the possibility to apply the theory to the practical problem in technology, for example, telecommunication and image processing. We have had a chance to meet many applied mathematicians not only inside of Japan but also in several countriesIn the theory of wavelet we use the time-frequency analysis, which is called mathematically the microlocal analysis, as a fundamental method. Using the time-frequency analysis we tried to describe some functions (distributions) as pictures and investigated the singularity of functions in the pictures.Theory of wavelet is closely related to the theory of partial differential equations or theory of pseudo-differential operators. In the theory of pseudo-differential operators, we get a generalized form of the sharp Garding's inequality. Also we get many result in the theory of partial differential equations like in he investigation of the singularity for the solution of the intial value problem for hyperolic equations. The reconsideration of these problems by using wavelet or multiwavelet will be interesting problems and may give the possibility of application of PDE to the practical problems in thecnology.
本研究项目的目的是将小波理论应用于实际技术问题。小波理论起步于八十年代初,最初的小波理论只构造了一个小波函数。所以理论的主要关注点是构造或寻找适合应用的小波函数。然而,该理论的应用已经得到了迅速的推广,有时我们需要两个以上的小波函数来表示函数或信号。这就是我们研究零小波理论的原因。在这个项目的第一年,我们研究了将理论应用于技术实际问题的可能性,例如电信和图像处理。在小波理论中,我们使用时频分析,在数学上称为微局部分析,作为一种基本方法。本文尝试用时频分析方法将一些函数(分布)描述为图像,并研究了图像中函数的奇异性。小波理论与偏微分方程理论或伪微分算子理论密切相关。在伪微分算子理论中,我们得到了尖锐Garding不等式的广义形式。在偏微分方程理论中也得到了许多结果,如对双曲方程初值问题解的奇异性的研究。用小波或多小波重新考虑这些问题将是一个有趣的问题,并可能为PDE在实际技术问题中的应用提供可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
藤原彰夫・H. Nagaoka: "An estimation theoretical characterization of coherent states"J. Math. Phys.. 40. 4227-4239 (1999)
Akio Fujiwara 和 H. Nagaoka:“相干态的估计理论表征”J. Phys. 40. 4227-4239 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
西谷達雄: "Hyperbolicity of two systems with two independent variables"Comm. Partial. Differential Equations. 23. 1061-1110 (1998)
Tatsuo Nishitani:“具有两个自变量的两个系统的双曲性”Comm。23。1061-1110(1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
西谷達雄: "Bicheracteros eurves and wellposedness for hyperbelic equations with noninvelitive multiple characteristics" J.Math.Kyoto Univ.38. 415-418 (1998)
Tatsuo Nishitani:“Bicheracteros eurves 和具有非invelitive 多重特征的双线性方程的适定性”J.Math.Kyoto Univ.38 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
森岡達史: "Line perturbation operaleurs microhypoelliptigues double" Tsukuba J.Math.22. 537-550 (1998)
Tatsufumi Morioka:“线微扰运算双椭圆”Tsukuba J.Math.22 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R. Aahino, C. Heil, M. Nagase and R. Vaillancourt: "Microlocal filtering with multiwavelets"CAMA. (accepted).
R. Aahino、C. Heil、M. Nagase 和 R. Vaillancourt:“多小波微局域滤波”CAMA。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAGASE Michihiro其他文献

NAGASE Michihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAGASE Michihiro', 18)}}的其他基金

Pseudodifferential Operators and Schrodinger Equations
伪微分算子和薛定谔方程
  • 批准号:
    09440060
  • 财政年份:
    1997
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

ATD: Quantifying Human Mobility using Topological and Time-Frequency Analysis
ATD:使用拓扑和时频分析量化人员流动性
  • 批准号:
    2219959
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
  • 批准号:
    2309652
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Collaborative Research: New perspectives from applied and computational time-frequency analysis
合作研究:应用和计算时频分析的新视角
  • 批准号:
    2309651
  • 财政年份:
    2023
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Time-frequency analysis in deep learning framework: theory, computation and applications
深度学习框架中的时频分析:理论、计算和应用
  • 批准号:
    RGPIN-2021-03657
  • 财政年份:
    2022
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Time-frequency analysis in deep learning framework: theory, computation and applications
深度学习框架中的时频分析:理论、计算和应用
  • 批准号:
    RGPIN-2021-03657
  • 财政年份:
    2021
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
Time-frequency analysis of quaternion-valued functions.
四元数值函数的时频分析。
  • 批准号:
    20K03653
  • 财政年份:
    2020
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Differentiating Narcolepsy from Sleep Deprivation Syndrome with a Physiological Approach Applying Time-Frequency Analysis
应用时频分析的生理学方法区分发作性睡病和睡眠剥夺综合征
  • 批准号:
    20K15886
  • 财政年份:
    2020
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Decoupling Theory, Time-Frequency Analysis and Related Oscillatory Integrals
解耦理论、时频分析及相关振荡积分
  • 批准号:
    1946107
  • 财政年份:
    2019
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Topics in Harmonic Analysis: Time-frequency Analysis and connections with Additive Combinatorics and Partial Differential Equations
谐波分析主题:时频分析以及与加性组合和偏微分方程的联系
  • 批准号:
    1900801
  • 财政年份:
    2019
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Standard Grant
Applied Time-frequency Analysis
应用时频分析
  • 批准号:
    RGPIN-2014-05059
  • 财政年份:
    2018
  • 资助金额:
    $ 2.43万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了