LOW DIMENSIONAL FIELD THEORIES AND THEIR APPLICATIONS

低维场理论及其应用

基本信息

  • 批准号:
    10044043
  • 负责人:
  • 金额:
    $ 3.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

In this project, fundamental problems of low dimensional physical systems such as field theory of quantum Hall effects, quantum gravity, super string, and super symmetric gauge theory and others are investigated and the following results have been obtained:(1)Compressible gas states of quantum Hall system have been established based on Hartree Foch theory on von Neumann lattice. They have anisotropic density moduration, nagative pressure and compressibility. Negative pressure leads quantum Hall effect to have unusual stability. Generalized flux state which connects fractional Hall effect with Hofstadter butterfly was proposed.(2)Chern-Simons theory was generalized to even dimensions and was quantized as an infinity reducible constrained system consistently.(3)Time reversal violating superconductors was analyzed and was shown to have pseudo Chern-Simons term in effective action. Experiment for its observation was also proposed.(4)Chern-Simons gravity and BF gravity were defined on lattice.(5)Conformal invariance of D-particle was shown and a new formulation based on Hamiltonian-Jacobi method was achieved.(6)A new technique to compute physical quantities at around critical point where conformal invariance was applied was developed.(7)Universal inequarities for entanglement entropy in quantum information theory was derived. A universal connection of conformal mapping with Toda heirechies and two-dimensional gravity was established.
本项目研究了低维物理系统的基本问题,如量子霍尔效应场论、量子引力、超弦和超对称规范理论等,取得了以下成果:(1)基于冯·诺依曼格子上的Hartree Foch理论,建立了量子霍尔系统的可压缩气态。它们具有各向异性的密度调制、负压和可压缩性。负压使量子霍尔效应具有不同寻常的稳定性。提出了将分数霍尔效应与霍夫施塔特蝴蝶相联系的广义磁通态。(2)将Chern-Simons理论推广到偶数维,并一致地将其量子化为一个无限可约约束系统。(3)分析了违反超导体的时间反转现象,证明了伪Chern-Simons项的有效作用。(4)在晶格上定义了Chern-Simons引力和BF引力。(5)证明了D粒子的共形不变性,得到了基于哈密顿-雅可比方法的新公式。(6)发展了一种应用共形不变性计算临界点附近物理量的新方法。(7)推导了量子信息论中纠缠熵的普遍不等式。建立了保角映射与Toda Heireches和二维引力的普遍联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
河本昇: "N=2 Supersymmetric model with Dirac-Kahler Fermions from Generalized gangethcey in two dimensions"Phys.Rev.D. (印刷中).
Noboru Kawamoto:“二维广义 gangethcey 的狄拉克-卡勒费米子的 N=2 超对称模型”Phys.Rev.D(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
増田貴宏: "Seiberg-Witten Theories of rank 2 gauge groups and Hypegeon series"Int.J.Mod.Physics A. 13. 3121-3144 (1998)
Takahiro Masuda:“2 阶规范组和 Hypegeon 系列的 Seiberg-Witten 理论” Int.J.Mod.Physics A. 13. 3121-3144 (1998)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J. Goryo: "E-B Mixing in T-violating"Jour . Phys . Soc . Japan. 67, No.9. 3006-3009 (1998)
J. Goryo:“T-违规中的 E-B 混合”杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J. Ambjorn: "THE QUANTUM SPACE-TIME OF C = -2 GRAVITY"Nucl. Phys.. B511. 673-710 (1998)
J. Ambjorn:“C 的量子时空 = -2 引力”Nucl。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J. Ambjon: "INTRINSIC GEOMETRIC STRUCTURE OF C = -2 QUANTUM GRAVITY"Nucl. Phys. Proc . Suppl.. 63. 748-750 (1998)
J. Ambjon:“C 的固有几何结构 = -2 量子引力”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHIKAWA Kenzo其他文献

ISHIKAWA Kenzo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHIKAWA Kenzo', 18)}}的其他基金

Interference and diffraction of the neutrino and the absolute neutrino mass
中微子的干涉和衍射以及绝对中微子质量
  • 批准号:
    24340043
  • 财政年份:
    2012
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Analysis of Moon by mean of Solar neutrino
利用太阳中微子分析月球
  • 批准号:
    19540253
  • 财政年份:
    2007
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Supersymmetric gauge theory and physics of precision measurement
超对称规范理论与精密测量物理
  • 批准号:
    16081201
  • 财政年份:
    2004
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
THEORETICAL INVESTIGAYTION OF QUANTUM HALL EFFECT
量子霍尔效应的理论研究
  • 批准号:
    07640522
  • 财政年份:
    1995
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theorles of Superconductivity and Quantum Hall Effect Via Chem-Simons Gauge Theory.
通过化学-西蒙斯规范理论的超导理论和量子霍尔效应。
  • 批准号:
    03640256
  • 财政年份:
    1991
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
場の理論における低エネルギー定理とその応用についての研究
低能定理及其在场论中的应用研究
  • 批准号:
    61540189
  • 财政年份:
    1986
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Effects of negative pressure wound therapy on the hair cycle and hair growth
负压伤口治疗对毛发周期和毛发生长的影响
  • 批准号:
    23K09093
  • 财政年份:
    2023
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The mechanisms of portable negative pressure wound therapy on wounds
便携式负压伤口治疗伤口的机制
  • 批准号:
    2890506
  • 财政年份:
    2023
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Studentship
Feasibility of Asian and Middle Eastern markets for the suitability of Nexa's Negative Pressure Wound Therapy
亚洲和中东市场适合 Nexa 负压伤口治疗的可行性
  • 批准号:
    10018718
  • 财政年份:
    2022
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Collaborative R&D
Implementation of Negative Pressure for Acute Paediatric Burns
负压治疗小儿急性烧伤的实施
  • 批准号:
    nhmrc : 2006970
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Partnership Projects
Development on Soft-Actuators Driven by Negative Pressure and Their Applications
负压驱动软执行器的研制及其应用
  • 批准号:
    21K03947
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Effect of Incisional Negative Pressure Wound Therapy on Wound Complications Following Sarcoma Surgery in Patients with perioperative radiation therapy; A Multicenter Randomized Clinical Trial
切口负压伤口治疗对肉瘤手术围手术期放疗患者伤口并发症的影响
  • 批准号:
    451722
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Operating Grants
The Effect of Lower-body Negative Pressure on Exercise Tolerance and Mechanisms of Dyspnea in Adults with Heart Failure with a Preserved Ejection Fraction
下半身负压对射血分数保留的心力衰竭成人运动耐量和呼吸困难机制的影响
  • 批准号:
    454549
  • 财政年份:
    2021
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Fellowship Programs
Adaption expansion of evidence based negative pressure wound therapy
基于证据的负压伤口治疗的适应扩展
  • 批准号:
    20K12725
  • 财政年份:
    2020
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Effects of CO2 on Regional Cerebral Blood Flow Regulation During Lower-Body Negative Pressure
下半身负压期间二氧化碳对局部脑血流调节的影响
  • 批准号:
    538611-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 3.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Elucidation of vibration characteristics of ultra-high-speed gas bearing-rotor system which generate high damping by generation of positive pressure and negative pressure
阐明通过正压和负压产生高阻尼的超高速气体轴承-转子系统的振动特性
  • 批准号:
    19K04264
  • 财政年份:
    2019
  • 资助金额:
    $ 3.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了