Mapping new dimensions in gene expression regulation
绘制基因表达调控的新维度
基本信息
- 批准号:10152617
- 负责人:
- 金额:$ 40.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATF6 geneAcetylationAlternative SplicingAmino Acyl-tRNA SynthetasesApoptosisCommunitiesComputer AnalysisDataDimensionsElementsEndoplasmic ReticulumFeedbackGene ExpressionGene Expression RegulationGenesGenetic TranscriptionInvestigationLaboratoriesMalignant NeoplasmsMapsMass Spectrum AnalysisMessenger RNAModificationMutationNerve DegenerationOxidation-ReductionPeptide Initiation FactorsPhosphorylationPhysiologic pulsePositioning AttributePost-Translational Protein ProcessingProcessProtein BiosynthesisProteinsProteomeProteomicsRNA DegradationRNA SplicingRNA chemical synthesisRegulationResourcesRibosomesRoleRouteSeriesStatistical ModelsStressSumoylation PathwaySystemTechnologyTestingTimeTranslationsValidationVariantWorkXBP1 genebiological adaptation to stresscellular pathologyendonucleaseendoplasmic reticulum stressexperimental studyfollow-upgenome-widehuman diseasemisfolded proteinnext generation sequencingprogramsprotein degradationresponsestatisticstime usetooltranscription factortranscriptomics
项目摘要
Program Abstract
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) and subsequent redox imbalance activate the
Unfolded Protein Response (UPR) to restore a healthy cellular proteome. Dysregulation of the UPR is key to human
diseases, including neurodegeneration and cancer. The UPR involves all components of gene expression control, i.e.
transcription, translation, and RNA and protein degradation, that are highly coordinated and follow intricate dynamics. At
first, phosphorylation of the translation initiation factor eIF2α suppresses general protein synthesis while activating
translation of specific mRNAs that encode transcription factors such as ATF4. Phosphorylation also activates the IRE1
endonuclease that splices and activates the mRNA of the XBP1 transcription factor. XBP1 and ATF4, together with ATF6
and other transcription factors, trigger a second wave of response by transcribing both UPR and apoptosis genes. Further,
XBP1 activity is not only controlled by IRE1, but also by SUMOylation and acetylation. IRE1 in turn can also degrade
SUMO mRNA, down-regulating this post-translational modification and creating a feedback mechanism of regulation.
These processes are accompanied by extensive RNA and protein degradation that remove irreparable molecules, creating
a highly interconnected system. Our recent work using time-series transcriptomics and proteomics data as well as
statistical modeling showed that during ER stress, mRNAs change in a pulse-like manner, while protein concentrations
adjust less rapidly and appear to switch to a new steady state.
Given these intricate relationships, I argue that the time is ripe to introduce systems level analyses to studies of the
UPR and assess the processes involved in its gene expression regulation in a comprehensive and unbiased way. My
laboratory's expertise in quantitative mass spectrometry, next-generation sequencing, computational analysis, and
experiments to evaluate new mechanisms provides the ideal background for such work. In the next five years, we will
move analysis of single time points to trajectories of the stress response; we will progress from examination of
concentration changes to estimating rates of RNA and protein synthesis and degradation; and we will map the protein
position and changes of diverse post-translational modifications to changes in these rates. These efforts will provide
valuable resources and statistics tools to the scientific community. They will also inform on regulatory principles
during the UPR and support specific new routes of investigation. We are only beginning to understand the
differential use and modification of components of the translation machinery, and in the next five years, we will follow
up on our recent findings on ribosome modifications, differential stability of ribosome subunits, and alternative splicing
of aminoacyl-tRNA synthetases under stress. Further, even well-studied factors such as ATF4 still are incompletely
understood in their regulation, and we will test the role of new sequence elements in ATF4 and other genes in their
effect on translation. Finally, the robustness of genes to variation, e.g. mutation, is central to understanding cellular
pathology, and again, our recent work suggests that some genes are robust to variation in some rates, but not others. We
will test these hypotheses in targeted studies.
程序摘要
内质网(ER)中错误折叠蛋白质的积累和随后的氧化还原失衡激活了
未折叠蛋白质反应(UPR)恢复健康的细胞蛋白质组。普遍定期审议的失调是人类
疾病,包括神经变性和癌症。UPR涉及基因表达控制的所有组成部分,即
转录,翻译,RNA和蛋白质降解,这些都是高度协调的,并遵循复杂的动力学。在
首先,翻译起始因子eIF 2 α的磷酸化抑制一般蛋白质合成,同时激活
翻译特定的mRNA,编码转录因子,如ATF 4。磷酸化也激活IRE 1
在一些实施方案中,转录因子是剪接和激活XBP 1转录因子的mRNA的核酸内切酶。XBP 1和ATF 4以及ATF 6
和其他转录因子,通过转录UPR和凋亡基因触发第二波反应。此外,本发明的目的是,
XBP 1的活性不仅受IRE 1的调控,还受SUMO化和乙酰化的调控。IRE 1反过来也可以降解
SUMO mRNA,下调这种翻译后修饰并产生反馈调节机制。
这些过程伴随着广泛的RNA和蛋白质降解,去除不可修复的分子,
一个高度互联的系统。我们最近的工作使用时间序列转录组学和蛋白质组学数据,
统计模型显示,在内质网应激期间,mRNA以脉冲样方式变化,而蛋白质浓度
调整得不那么快,似乎切换到一个新的稳定状态。
鉴于这些错综复杂的关系,我认为,时机已经成熟,引入系统水平的分析,以研究
UPR并以全面、公正的方式评估其基因表达调控所涉及的过程。我
实验室在定量质谱、下一代测序、计算分析和
评估新机制的实验为此类工作提供了理想的背景。未来五年,我们将
将单个时间点的分析移动到应激反应的轨迹;我们将从检查
浓度变化来估计RNA和蛋白质的合成和降解速率;我们将绘制蛋白质
位置和变化的各种翻译后修饰的变化,这些利率。这些努力将提供
科学界的宝贵资源和统计工具。他们还将告知监管原则
在普遍定期审议期间,支持具体的新调查路线。我们才刚刚开始了解
差异化使用和修改翻译机器的组件,在未来五年内,我们将遵循
我们最近在核糖体修饰、核糖体亚基的差异稳定性和可变剪接方面的发现
氨酰-tRNA合成酶在压力下的变化。此外,即使是充分研究的因素,如ATF 4仍然是不完全的,
我们将测试ATF 4和其他基因中新序列元件在其调控中的作用,
对翻译的影响。最后,基因对变异(例如突变)的鲁棒性是理解细胞遗传学的核心。
我们最近的研究再次表明,某些基因对某些比率的变化具有鲁棒性,但对另一些则不然。我们
将在有针对性的研究中检验这些假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Vogel其他文献
Christine Vogel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Vogel', 18)}}的其他基金
Mapping new dimensions in gene expression regulation
绘制基因表达调控的新维度
- 批准号:
10391492 - 财政年份:2018
- 资助金额:
$ 40.74万 - 项目类别:
Mapping new dimensions in gene expression regulation
绘制基因表达调控的新维度
- 批准号:
9920165 - 财政年份:2018
- 资助金额:
$ 40.74万 - 项目类别:
Mapping new dimensions in gene expression regulation
绘制基因表达调控的新维度
- 批准号:
10810411 - 财政年份:2018
- 资助金额:
$ 40.74万 - 项目类别:
Robust statistical approaches for decoding protein and mRNA expression regulation
用于解码蛋白质和 mRNA 表达调控的稳健统计方法
- 批准号:
8825743 - 财政年份:2014
- 资助金额:
$ 40.74万 - 项目类别:
Robust statistical approaches for decoding protein and mRNA expression regulation
用于解码蛋白质和 mRNA 表达调控的稳健统计方法
- 批准号:
9265894 - 财政年份:2014
- 资助金额:
$ 40.74万 - 项目类别:
Robust statistical approaches for decoding protein and mRNA expression regulation
用于解码蛋白质和 mRNA 表达调控的稳健统计方法
- 批准号:
8894532 - 财政年份:2014
- 资助金额:
$ 40.74万 - 项目类别:
相似海外基金
Investigating the functions of histone acetylation in genome organization and leukemogenesis
研究组蛋白乙酰化在基因组组织和白血病发生中的功能
- 批准号:
EP/Y000331/1 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Research Grant
Gene Modulation of Acetylation Modifiers to Reveal Regulatory Links to Human Cardiac Electromechanics
乙酰化修饰剂的基因调节揭示与人类心脏机电的调节联系
- 批准号:
10677295 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Novel roles of PDK2 in heart failure: Regulation of mitochondrial nuclear crosstalk via metabolic regulation and histone acetylation
PDK2 在心力衰竭中的新作用:通过代谢调节和组蛋白乙酰化调节线粒体核串扰
- 批准号:
10635599 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Regulation of hepatic lysine N-acetylation by cysteine proximity due to alcohol toxicity
酒精毒性导致的半胱氨酸接近对肝脏赖氨酸 N-乙酰化的调节
- 批准号:
10752320 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Histone Acetylation Regulates Microglial Innate Immune Memory
组蛋白乙酰化调节小胶质细胞先天免疫记忆
- 批准号:
478927 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Operating Grants
Dysregulation of Histone Acetylation in Parkinson's Disease
帕金森病中组蛋白乙酰化的失调
- 批准号:
10855703 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
Obesity-related hypertension: the contribution of PPAR gamma acetylation and asprosin
肥胖相关高血压:PPAR γ 乙酰化和白脂素的贡献
- 批准号:
10654210 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
In vivo tracing of hepatic ethanol metabolism to histone acetylation: role of ACSS2 in alcohol-induced liver injury
肝脏乙醇代谢与组蛋白乙酰化的体内追踪:ACSS2 在酒精性肝损伤中的作用
- 批准号:
10667952 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别:
The function of TWIST1 acetylation in cell fate and tissue development
TWIST1 乙酰化在细胞命运和组织发育中的作用
- 批准号:
10726986 - 财政年份:2023
- 资助金额:
$ 40.74万 - 项目类别: