Meiotic recombination in budding yeast
芽殖酵母中的减数分裂重组
基本信息
- 批准号:10155941
- 负责人:
- 金额:$ 29.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:BehaviorBiochemicalBiologicalBiological ModelsCell CycleCell divisionCellsChromosome PairingChromosome SegregationChromosomesCongenital AbnormalityDNADNA SequenceDNA biosynthesisDiagnosisDiploid CellsDiploidyDouble Strand Break RepairDown SyndromeEnsureFailureFamilyFertilizationGenesGeneticGenetic RecombinationGerm CellsGrantHaploidyHumanHybridsInfertilityKnowledgeLeadLifeMalignant NeoplasmsMammalsMediatingMeiosisMeiotic RecombinationMitoticMitotic RecombinationMolecularMutationOrganismOrthologous GenePhosphorylationPhosphotransferasesPlayPreventionProcessRNARegulationResearchRoleSaccharomyces cerevisiaeSaccharomycetalesSexual ReproductionSister ChromatidTestingWorkYeastscohesionegggene functiongenome integrityhelicasein vivomembernovelnovel strategiespreventrecombinasesegregationsperm celltool
项目摘要
Fundamental to sexual reproduction is the ability to make gametes, such as sperm and eggs in
humans, which contain only one copy of each chromosome. Fertilization then results in the fusion of two
haploid gametes to create a diploid organism. For organisms such as budding yeast and humans, this is a
daunting task, as there are 16 and 23 pairs of chromosomes, respectively, that must be properly sorted into
each gamete. Meiosis is the specialized cell division that divides the chromosome number in half by having
one round of DNA replication followed by two rounds of chromosome segregation. Failure to properly
segregate chromosomes during meiosis produces chromosomally imbalanced gametes, resulting in infertility
and birth defects such as Trisomy 21 (Down Syndrome).
A critical part of meiosis is the first meiotic division, where homologous chromosomes are segregated
to opposite poles of the spindle. Crossovers are created by the reciprocal exchange of DNA between
homologs. Crossovers, in combination with sister chromatid cohesion, physically connect homologs so they
can align and properly segregate at the first meiotic division. Crossovers result from the repair of double strand
breaks that are deliberately introduced into chromosomes to initiate recombination. Because unrepaired double
strand breaks are lethal, meiotic recombination is a highly regulated process that ensures that every pair of
homologs receives at least one crossover and that all double strand breaks are repaired before the first meiotic
division.
Studying meiosis directly in mammals is difficult as it is hard to access germ cells and the cells are
diploid, making it challenging to find recessive mutations. The budding yeast, Saccharomyces cerevisiae, has
been an excellent model system for studying meiosis because of the sophisticated genetic, biochemical,
molecular and cell biological tools that are available. The focus of my research has been on identifying genes
required for meiotic recombination and defining the molecular mechanisms by which these genes function
and/or are regulated. In particular, my lab has developed novel approaches for studying how phosphorylation
regulates recombination during meiosis, with an emphasis on the meiosis-specific kinase, Mek1 and the
conserved cell cycle kinase, Cdc7-Dbf4.
Although immense progress has been made in our understanding of meiotic recombination, there are
still critical gaps that need to be filled. For example, there are many genes that contribute to the fidelity of
meiotic double strand break repair which remain to be discovered. Over the next five years, my lab plans to
study two genes we have identified that were previously unknown to play a role in meiosis: SEN1 and RRM3.
Sen1 is a helicase that unwinds RNA/DNA hybrids called R-loops in mitotically dividing cells and is essential
for life. Its mammalian ortholog, Senataxin, is required for meiosis. Rrm3 is a member of the conserved Pif1
DNA helicase family that is well known for its role in DNA replication. In addition, we have discovered a
potentially novel role for two other DNA helicases, Sgs1 and Srs2, working together in the regulation of
crossover formation.
Meiosis in many organisms such as yeast and mammals requires two recombinases, Rad51, which is
essential for mitotic recombination and the meiosis-specific Dmc1, which mediates the bulk of interhomolog
recombination. An outstanding question is why two recombinases are necessary. Work from my lab and others
has suggested that Dmc1 has evolved to better handle the mismatched basepairs that can arise by
interhomolog strand invasion because homologs have highly similar, but not necessarily identical DNA
sequences. My lab has developed an in vivo approach to test this interesting hypothesis. The work supported
by this grant will make an important contribution to our understanding of meiosis, knowledge which may
ultimately be applicable in humans for preventing/treating infertility and birth defects.
有性生殖的基础是制造配子的能力,如精子和卵子。
人类,每个染色体只有一个拷贝。受精的结果是两个
单倍体配子来创造二倍体生物体。对于芽殖酵母和人类等生物体来说,这是一种
这是一项艰巨的任务,因为分别有16对和23对染色体,必须正确地分类成
每个配子减数分裂是一种特殊的细胞分裂,它通过使染色体数目减半,
一轮DNA复制后两轮染色体分离。未能正确
在减数分裂期间分离的染色体产生染色体不平衡的配子,导致不育
和出生缺陷,如21三体(唐氏综合症)。
减数分裂的一个关键部分是第一次减数分裂,同源染色体分离
到主轴的相反两极。交叉是由DNA的相互交换产生的,
同系物。交叉,结合姐妹染色单体的凝聚力,物理连接同源物,
可以在第一次减数分裂时对齐并正确分离。交叉是由双链修复引起的,
有意引入染色体以启动重组的断裂。因为未修复的双
链断裂是致命的,减数分裂重组是一个高度调控的过程,确保每对染色体都能在减数分裂中发生。
同源物接受至少一次交换,并且所有双链断裂在第一次减数分裂前被修复
师.
直接在哺乳动物中研究减数分裂是困难的,因为很难接近生殖细胞,而且细胞是
二倍体,这使得寻找隐性突变具有挑战性。芽殖酵母酿酒酵母
由于复杂的遗传,生化,
分子和细胞生物学工具。我研究的重点是
减数分裂重组所需的,并确定这些基因功能的分子机制
和/或被调节。特别是,我的实验室已经开发了新的方法来研究磷酸化如何
调节减数分裂过程中的重组,重点是减数分裂特异性激酶Mek 1和
保守的细胞周期激酶Cdc 7-Dbf 4。
虽然我们对减数分裂重组的理解已经取得了巨大的进展,但仍然存在一些问题。
仍然是需要填补的关键空白。例如,有许多基因有助于
减数分裂双链断裂修复,仍有待发现。在接下来的五年里,我的实验室计划
研究了我们已经确定的两个基因,它们以前不知道在减数分裂中起作用:SEN 1和RRM 3。
Sen 1是一种解旋酶,在有丝分裂的细胞中解旋RNA/DNA杂合体(称为R环),是必不可少的
终身它的哺乳动物直系同源物Senataxin是减数分裂所必需的。Rrm 3是保守的Pif 1的成员
DNA解旋酶家族,以其在DNA复制中的作用而闻名。此外,我们还发现了一个
另外两种DNA解旋酶Sgs 1和Srs 2可能在调节
交叉编队
在许多生物体如酵母和哺乳动物中的减数分裂需要两种重组酶Rad 51,
对于有丝分裂重组和减数分裂特异性Dmc 1是必需的,Dmc 1介导大部分同源物之间的相互作用。
重组一个突出的问题是为什么需要两个重组酶。我的实验室和其他人的工作
Dmc 1已经进化到更好地处理可能出现的错配碱基对,
同源物间链侵入,因为同源物具有高度相似但不一定相同的DNA
序列的我的实验室已经开发了一种体内方法来测试这个有趣的假设。工作支持
这项资助将对我们理解减数分裂做出重要贡献,
最终可应用于人类以预防/治疗不孕症和出生缺陷。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nancy M. Hollingsworth其他文献
The meiotic-specific Mek1 kinase in budding yeast regulates interhomolog recombination and coordinates meiotic progression with double-strand break repair
- DOI:
10.1007/s00294-019-00937-3 - 发表时间:
2019-01-22 - 期刊:
- 影响因子:1.600
- 作者:
Nancy M. Hollingsworth;Robert Gaglione - 通讯作者:
Robert Gaglione
Nancy M. Hollingsworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nancy M. Hollingsworth', 18)}}的其他基金
2012 Meiosis Gordon Research Conference and Gordon Research Seminar
2012减数分裂戈登研究大会暨戈登研究研讨会
- 批准号:
8230928 - 财政年份:2012
- 资助金额:
$ 29.47万 - 项目类别:
Meiotic Cdc7 Substrates and Regulation of NDT80 Transcription
减数分裂 Cdc7 底物和 NDT80 转录的调控
- 批准号:
7917074 - 财政年份:2010
- 资助金额:
$ 29.47万 - 项目类别:
Analysis of meiotic chromosome synapsis in yeast
酵母减数分裂染色体突触分析
- 批准号:
7850985 - 财政年份:2009
- 资助金额:
$ 29.47万 - 项目类别:
ANALYSIS OF MEIOTIC CHROMOSOME SYNAPSIS IN YEAST
酵母减数分裂染色体联会分析
- 批准号:
6351195 - 财政年份:1995
- 资助金额:
$ 29.47万 - 项目类别:
ANALYSIS OF MEIOTIC CHROMOSOME SYNAPSIS IN YEAST
酵母减数分裂染色体联会分析
- 批准号:
2857200 - 财政年份:1995
- 资助金额:
$ 29.47万 - 项目类别:
Analysis of Meiotic Chromosome Synapsis in Yeast
酵母减数分裂染色体联会分析
- 批准号:
6845319 - 财政年份:1995
- 资助金额:
$ 29.47万 - 项目类别:
ANALYSIS OF MEIOTIC CHROMOSOME SYNAPSIS IN YEAST
酵母减数分裂染色体联会分析
- 批准号:
2634743 - 财政年份:1995
- 资助金额:
$ 29.47万 - 项目类别:
Analysis of Meiotic Chromosome Synapsis in Yeast
酵母减数分裂染色体联会分析
- 批准号:
7011256 - 财政年份:1995
- 资助金额:
$ 29.47万 - 项目类别:
相似海外基金
Elucidating the molecular basis and expanding the biological applications of the glycosyltransferases using biochemical and structural biology approaches
利用生化和结构生物学方法阐明糖基转移酶的分子基础并扩展其生物学应用
- 批准号:
23K14138 - 财政年份:2023
- 资助金额:
$ 29.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
- 批准号:
10396678 - 财政年份:2021
- 资助金额:
$ 29.47万 - 项目类别:
Analytical validation of a biochemical test for alpha-synuclein aggregates in biological fluids for the diagnosis of Parkinson's Disease
用于诊断帕金森病的生物体液中 α-突触核蛋白聚集体的生化测试的分析验证
- 批准号:
10361903 - 财政年份:2021
- 资助金额:
$ 29.47万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10248476 - 财政年份:2019
- 资助金额:
$ 29.47万 - 项目类别:
Shining a light on dense granules- biochemical, genetic and cell biological investigation of an essential but understudied compartment in malarial -
揭示致密颗粒——对疟疾中一个重要但尚未充分研究的隔室进行生化、遗传和细胞生物学研究——
- 批准号:
2243093 - 财政年份:2019
- 资助金额:
$ 29.47万 - 项目类别:
Studentship
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10687856 - 财政年份:2019
- 资助金额:
$ 29.47万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10005386 - 财政年份:2019
- 资助金额:
$ 29.47万 - 项目类别:
Molecular Mechanisms and Biochemical Circuits for Adaptation in Biological Systems
生物系统适应的分子机制和生化回路
- 批准号:
10480082 - 财政年份:2019
- 资助金额:
$ 29.47万 - 项目类别:
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
- 批准号:
2314361 - 财政年份:2018
- 资助金额:
$ 29.47万 - 项目类别:
Studentship
Investigation into the biochemical and biological effects of air pollution on the function of human skin and the intervention of such effects
空气污染对人体皮肤功能的生化、生物学影响及其干预研究
- 批准号:
BB/S506837/1 - 财政年份:2018
- 资助金额:
$ 29.47万 - 项目类别:
Training Grant














{{item.name}}会员




