Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
基本信息
- 批准号:10155555
- 负责人:
- 金额:$ 69.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-15 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAdoptedAdultAlgorithmsAmericanAnimal ModelAnimal TestingAnimalsAtherosclerosisBlood VesselsBypassCadaverCalciumCaliberCardiologyCessation of lifeChronicChronic DiseaseClinicalCollagenCommunitiesConsumptionCustomDepositionDevicesDistalElementsExposure toFailureFeedbackFibrinFluoroscopyFreedomGoalsHealth Care CostsHeart failureHumanImageInjuryInterventionInterventional radiologyIschemiaLateralLeadLengthLesionLettersLimb structureMapsMechanicsMedicalModelingMotionOperative Surgical ProceduresOral cavityOrganPatient-Focused OutcomesPatientsPhysiciansProceduresPropertyPulsatile FlowRadiationRadiation exposureRiskRoboticsRunningSideStentsStrokeStructureSurfaceSystemTendon structureTestingTimeTissuesTransducersTreatment outcomeUltrasonic TransducerUltrasonographycalcificationclinically translatablecostdesignflexibilityhazardhealingimage guidedimage guided interventionimprovedinnovationlimb amputationnew technologynotch proteinnoveloral lesionprototypereal-time imagesrobotic systemspine bone structuresuccessvibration
项目摘要
The burden of atherosclerotic vascular disease is immense among adult Americans, contributing to about
800,000 deaths per year. Chronic total occlusions (CTO) are the riskiest, most challenging, and least successful
of these vascular lesions to treat with traditional stenting or endovascular devices. Procedural complexity and
failure with CTO's are attributed to the lesion structure, which includes a fibrous calcific plaque on the proximal
entry side of the lesion, and an irregular micro-lumen spanning its length. Passing a guidewire across this lesion
is challenging, as the lateral view provided by 2D fluoroscopic imaging does not directly identify the
“mouth”/entry to the lumen. The flexible tips of the guidewires bend due to multiple-impacts with stiff lesions,
increasing the technical challenge with each additional attempt. Even successful procedures are time-consuming,
involve chance, require prolonged patient and physician exposure to radiation and use excessive amounts of
contrast. This clinical challenge is well recognized in the community. Breaking the calcium with mechanical
vibrations or drilling was adopted by several, but the need for a large bore tip to house such mechanical
components makes it applicable only in larger vessels. In addition, the debris resulting from such an approach
carries the risk of ischemia or stroke in the distal organs. Since endovascular approaches are increasingly utilized
over surgical bypass of CTO's, there is an urgent need to develop new technologies to meet this critical need!
Thus, the overall goal of this project is to develop a novel steerable guidewire with a miniature forward-
viewing ultrasound (US) transducer to enable real-time image-guided CTO traversal. We will address three
specific aims – Sp. Aim 1: Design and develop a robotically steerable, 0.014” diameter guidewire (0.355 mm)
system that can accommodate a .350 mm x .350 mm US transducer at its tip and can be steered with image
feedback from the transducer. Sp. Aim 2: Design and build a forward-looking transducer for the robotically
steerable guidewire and an algorithm to reconstruct an image of the encountered occlusion. Sp. Aim 3: To
iteratively optimize the US-steerable guidewire design using 3D printed patient-specific models of CTO's,
realistic human cadaver limbs with CTO, and a live animal model of CTO's. This project is innovative on several
fronts. It represents the first use of intravascular steerable robotic guidewire capable of forward looking US
imaging and image-guided navigation through vasculature and occluded vessels. The ability to steer, visualize
and navigate the guidewire is highly novel and will eventually result in improvement of clinical workflow and
patient treatment outcomes. This highly interdisciplinary project combines expertise in medical robotics, US
imaging, pulsatile flow models and image-guided interventions in animal models, interventional cardiology, and
interventional radiology. The US-guided, intravascular steerable robotic system will have significant societal
impact through improved patient outcomes, reduced radiation exposure for the physician and the patient,
reduced rate of procedural failures, and lower healthcare costs.
动脉粥样硬化性血管疾病给美国成年人带来了巨大的负担,导致约
每年有 80 万人死亡。慢性完全闭塞(CTO)是最危险、最具挑战性和最不成功的
使用传统支架或血管内装置治疗这些血管病变。程序复杂性和
CTO 的失败归因于病变结构,其中包括近端的纤维钙化斑块
病变的入口侧,以及横跨其长度的不规则微腔。将导丝穿过该病变
具有挑战性,因为 2D 荧光镜成像提供的侧视图不能直接识别
“嘴”/管腔的入口。导丝的柔性尖端由于对僵硬病变的多次冲击而弯曲,
每一次额外的尝试都会增加技术挑战。即使成功的手术也很耗时,
涉及机会,需要患者和医生长时间暴露于辐射并使用过量的
对比。这一临床挑战得到了社区的广泛认可。用机械破钙
振动或钻孔已被一些公司采用,但需要大孔径尖端来容纳这种机械
组件使其仅适用于较大的容器。此外,这种方法产生的碎片
具有远端器官缺血或中风的风险。由于血管内方法的使用越来越多
由于 CTO 的外科搭桥手术,迫切需要开发新技术来满足这一迫切需求!
因此,该项目的总体目标是开发一种具有微型前向的新型可操纵导丝。
查看超声 (US) 传感器,以实现实时图像引导的 CTO 遍历。我们将解决三个问题
具体目标 – Sp。目标 1:设计和开发机器人可操纵、直径 0.014 英寸的导丝(0.355 毫米)
系统可在其尖端容纳 0.350 mm x 0.350 mm US 传感器,并可通过图像进行控制
来自传感器的反馈。 Sp。目标 2:为机器人设计并构建具有前瞻性的传感器
可操纵导丝和重建所遇到的闭塞图像的算法。 Sp。目标 3:
使用 CTO 的 3D 打印患者特定模型迭代优化 US 可操纵导丝设计,
带有 CTO 的逼真人体尸体四肢,以及 CTO 的活体动物模型。该项目在多个方面都有创新
战线。它代表了首次使用能够前瞻性美国的血管内可操纵机器人导丝
通过脉管系统和闭塞血管的成像和图像引导导航。驾驶能力、可视化能力
和导航导丝是非常新颖的,最终将改善临床工作流程和
患者的治疗结果。这个高度跨学科的项目结合了美国医疗机器人技术的专业知识
动物模型中的成像、脉动血流模型和图像引导干预、介入心脏病学和
介入放射学。美国引导的血管内可操纵机器人系统将具有重大的社会价值
通过改善患者治疗效果、减少医生和患者的辐射暴露来产生影响,
降低程序失败率并降低医疗费用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAYDEV P. DESAI其他文献
JAYDEV P. DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAYDEV P. DESAI', 18)}}的其他基金
Steerable Robotic Endoscopic Tools for Pediatric Neurosurgery
用于小儿神经外科的可操纵机器人内窥镜工具
- 批准号:
10217219 - 财政年份:2020
- 资助金额:
$ 69.62万 - 项目类别:
Steerable Robotic Endoscopic Tools for Pediatric Neurosurgery
用于小儿神经外科的可操纵机器人内窥镜工具
- 批准号:
10063219 - 财政年份:2020
- 资助金额:
$ 69.62万 - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
9914884 - 财政年份:2019
- 资助金额:
$ 69.62万 - 项目类别:
Ultrasound-guided, Robotically Steerable Guidewire for Endovascular Interventions
用于血管内介入治疗的超声引导机器人可操纵导丝
- 批准号:
10392386 - 财政年份:2019
- 资助金额:
$ 69.62万 - 项目类别:
Image-guided Intravascular Robotic System for Mitral Valve Repair and Implants
用于二尖瓣修复和植入的图像引导血管内机器人系统
- 批准号:
10117090 - 财政年份:2018
- 资助金额:
$ 69.62万 - 项目类别:
Identification of AF Ablation Targets via a Steerable Actuated Catheter(AFIB)
通过可操纵驱动导管 (AFIB) 识别 AF 消融目标
- 批准号:
9327633 - 财政年份:2015
- 资助金额:
$ 69.62万 - 项目类别:
Identification of AF Ablation Targets via a Steerable Actuated Catheter
通过可操纵驱动导管识别 AF 消融目标
- 批准号:
8893523 - 财政年份:2015
- 资助金额:
$ 69.62万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
8853860 - 财政年份:2014
- 资助金额:
$ 69.62万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
9327628 - 财政年份:2014
- 资助金额:
$ 69.62万 - 项目类别:
Neurosurgical Intracerebral Hemorrhage Evacuation (NICHE) Robot
神经外科脑出血清除(NICHE)机器人
- 批准号:
8684084 - 财政年份:2014
- 资助金额:
$ 69.62万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 69.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 69.62万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 69.62万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 69.62万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 69.62万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 69.62万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 69.62万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 69.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 69.62万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 69.62万 - 项目类别:
Standard Grant














{{item.name}}会员




