Computer aided diagnosis of cancer metastases in the brain
计算机辅助诊断脑部癌症转移
基本信息
- 批准号:10163013
- 负责人:
- 金额:$ 26.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-06 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsAnatomyAngiogenesis InhibitionAppearanceAwardBlindedBlood - brain barrier anatomyBlood VesselsBrainBrain NeoplasmsBrain scanCancer DetectionCancer EtiologyCancer PatientCharacteristicsClinicClinicalColon CarcinomaColorComplementComputational TechniqueComputer softwareComputer-Assisted DiagnosisCranial IrradiationDataDetectionDevelopmentDiagnosisDiagnosticDiagnostic Neoplasm StagingDigital Imaging and Communications in MedicineDiseaseDisease remissionDisseminated Malignant NeoplasmDura MaterEarly DiagnosisEdemaEventFunctional Magnetic Resonance ImagingGoalsHumanImageImaging TechniquesImmunotherapyInterventionLabelLeptomeningesLesionLifeLongevityMagnetic Resonance ImagingMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of lungMalignant neoplasm of ovaryMalignant neoplasm of pancreasMetastatic malignant neoplasm to brainMethodsMindModalityMorbidity - disease rateMorphologyNeoplasm MetastasisNeuraxisPatient imagingPatient-Focused OutcomesPatientsPerformancePeripheralPersonal SatisfactionPhysiciansPlayProcessQuality of lifeRadiationRadiation therapyRadiology SpecialtyRadiosurgeryReadingRenal carcinomaResearchResolutionSavingsScanningShapesSignal TransductionSkin CancerSpeedStructureTechniquesTestingTimeaccurate diagnosisbasebrain parenchymacancer cellcancer diagnosiscancer therapychemotherapyclinical Diagnosiscontrast enhanceddashboarddiagnosis designdiagnostic accuracyimaging modalityimprovedmalignant breast neoplasmmelanomanoveloutcome forecastparallel computerradiologistsegmentation algorithmtooltumoruser-friendly
项目摘要
The overarching goal of this project is to improve the accuracy in diagnosing cancer metastases in the brain
through the development of a novel computer-aided diagnosis (CAD) technique. In today’s cancer treatment, it
is often not the primary cancer but the metastasized cancer that causes fatality. Many cancer, including lung,
kidney, ovarian, and breast cancer, and melanoma, have a tendency metastasizing to the brain and the
number of brain metastases is as high as 170,000 a year in the US alone. Therefore, accurate diagnosis of
brain metastases is of utmost importance in saving lives and improving patient’s well-being. Magnetic
resonance imaging (MRI) is the most widely used modality to scan brain for potential metastases but
diagnosing metastases is a very challenging task that has a considerable rate of false-negatives. The first
difficulty in diagnosing metastases is that, at early stage, metastases are asymptomatic. The second difficulty
is that metastases manifest as weak signal intensity changes on MRI and their appearance is often highly
similar to normal brain structures, such as small blood vessels, meaning that one must visualize in his/her mind
whether an observed object is a metastasis or a blood vessel. Missing a metastasis has a severe consequence
as the patient will not be called for further treatment. The benefit of accurate diagnosis of metastases, on the
other hand, can have a significant benefit to the patient as treatment like stereotactic radiosurgery (SRS) can
completely eliminate the metastasized tumor in many cases and extend patient’s life span by three to four
years in most cases.
CAD can play a key role in improving the accuracy in diagnosing brain metastases by identifying abnormal
signal intensity changes and mark them for radiologists to examine. In this process, CAD will function as an aid
tool to complement human’s expertise in interpreting brain MRI. However, despite the importance of finding
and treating brain metastases, there currently is lacking a CAD approach to this problem. Many existing
computational techniques on brain MRI were tailored to MRI data acquired in a research setting that often
involves many other MRI techniques such as DWI, DTI, and functional MRI. But in clinics only anatomic MRI
like T1- and T2-weighted MRI are used to scan a patient, therefore, a CAD approach must be tailored to the
clinical setting to assist radiologists in reading the brain MRI. In this project we propose a CAD design that is
based on novel computational techniques and integrated with routine clinical MRI acquisition. The CAD design
features minimum user intervention and parameter selection, high robustness, and user-friendliness. We will
also take advantage of the availability of graphics processing unit (GPU) in implementation to speed up the
computations. We expect the proposed CAD approach will improve the accuracy of diagnosing brain
metastases, and in turn, save lives and benefit patients’ well-being.
该项目的首要目标是提高诊断脑中癌症转移的准确性
通过一种新的计算机辅助诊断(CAD)技术的发展。在当今的癌症治疗中,
通常不是原发性癌症,而是导致死亡的转移性癌症。许多癌症,包括肺癌,
肾癌、卵巢癌、乳腺癌和黑色素瘤有向大脑转移的趋势,
仅在美国,脑转移的数量就高达每年17万。因此,准确诊断
脑转移对于挽救生命和改善患者的健康至关重要。磁
共振成像(MRI)是扫描脑以寻找潜在转移的最广泛使用的方式,
诊断转移是一项非常具有挑战性的任务,其具有相当大的假阴性率。第一
诊断转移的困难在于,在早期阶段,转移是无症状的。第二个困难
转移瘤在MRI上表现为弱信号强度变化,并且它们的外观通常高度
类似于正常的大脑结构,如小血管,这意味着一个人必须在他/她的脑海中想象
观察对象是转移瘤还是血管。错过一个转移有严重的后果
因为患者不会被要求进一步治疗。准确诊断转移瘤的益处,
另一方面,可以对患者有显著的益处,因为像立体定向放射外科手术(SRS)这样的治疗可以
在许多情况下完全消除转移的肿瘤,并延长患者的寿命三到四年
在大多数情况下,几年。
CAD可通过识别脑转移瘤的异常,提高脑转移瘤的诊断准确性
信号强度的变化,并标记它们供放射科医生检查。在这个过程中,CAD将起到辅助作用
这是一个补充人类在解释大脑MRI方面的专业知识的工具。然而,尽管发现
以及治疗脑转移瘤,目前缺乏针对该问题的CAD方法。许多现有
脑MRI的计算技术是根据研究环境中获得的MRI数据量身定制的,
涉及许多其他MRI技术,如DWI、DTI和功能性MRI。但在临床上,
如T1和T2加权MRI用于扫描患者,因此,CAD方法必须根据患者的
临床环境,以帮助放射科医生阅读脑部MRI。在这个项目中,我们提出了一个CAD设计,
基于新的计算技术并与常规临床MRI采集相结合。cad设计
具有最少的用户干预和参数选择、高鲁棒性和用户友好性。我们将
还利用图形处理单元(GPU)的可用性来加速实现
计算。我们期望提出的CAD方法将提高诊断大脑的准确性
转移,并反过来挽救生命,造福患者的福祉。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantification of retinal blood leakage in fundus fluorescein angiography in a retinal angiogenesis model.
视网膜血管生成模型中眼底荧光素血管造影的视网膜血液泄漏的定量。
- DOI:10.1038/s41598-021-99434-2
- 发表时间:2021-10-06
- 期刊:
- 影响因子:4.6
- 作者:Comin CH;Tsirukis DI;Sun Y;Xu X
- 通讯作者:Xu X
A neural network approach to segment brain blood vessels in digital subtraction angiography.
- DOI:10.1016/j.cmpb.2019.105159
- 发表时间:2020-03
- 期刊:
- 影响因子:6.1
- 作者:Zhang M;Zhang C;Wu X;Cao X;Young GS;Chen H;Xu X
- 通讯作者:Xu X
That’s the Wrong Lung! Evaluating and Improving the Interpretability of Unsupervised Multimodal Encoders for Medical Data
- DOI:10.48550/arxiv.2210.06565
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Denis Jered McInerney;Geoffrey S. Young;Jan-Willem van de Meent;Byron Wallace
- 通讯作者:Denis Jered McInerney;Geoffrey S. Young;Jan-Willem van de Meent;Byron Wallace
LED Phototherapy with Gelatin Sponge Promotes Wound Healing in Mice.
LED 光疗与明胶海绵促进小鼠伤口愈合
- DOI:10.1111/php.12816
- 发表时间:2018-01
- 期刊:
- 影响因子:3.3
- 作者:Zhang H;Liu S;Yang X;Chen N;Pang F;Chen Z;Wang T;Zhou J;Ren F;Xu X;Li T
- 通讯作者:Li T
Clinical Validation of Automatable Gaussian Normalized CBV in Brain Tumor Analysis: Superior Reproducibility and Slightly Better Association with Survival than Current Standard Manual Normal Appearing White Matter Normalization.
- DOI:10.1016/j.tranon.2018.07.017
- 发表时间:2018-12
- 期刊:
- 影响因子:5
- 作者:Qin L;Li X;Li A;Cheng S;Qu J;Reinshagen K;Hu J;Himes N;Lu G;Xu X;Young GS
- 通讯作者:Young GS
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Young其他文献
Geoffrey Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Young', 18)}}的其他基金
A New Informatics Approach for Detection of Cerebrovascular Abnormalities
检测脑血管异常的新信息学方法
- 批准号:
10682493 - 财政年份:2022
- 资助金额:
$ 26.85万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 26.85万 - 项目类别:
Research Grant