A New Informatics Approach for Detection of Cerebrovascular Abnormalities
检测脑血管异常的新信息学方法
基本信息
- 批准号:10682493
- 负责人:
- 金额:$ 38.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAffectAlgorithmsAngiographyArteriesBackBlood VesselsBrainBrain AneurysmsBrain DiseasesBrain hemorrhageBrain imagingBrain scanCause of DeathCenters for Disease Control and Prevention (U.S.)Cerebral AngiographyCerebrovascular DisordersCerebrovascular systemCessation of lifeClassificationClinicClinicalClinical InformaticsCoagulation ProcessColorComplexComputational TechniqueComputational algorithmComputer AssistedComputersConsumptionDetectionDiagnosisDiagnosticDiseaseFatigueFistulaGoalsHealthHemorrhageHumanImageIndividualInformaticsInterobserver VariabilityIntracranial AneurysmKnowledgeLocationManualsMeasurementMeasuresMethodsModelingMorbidity - disease rateNervous System TraumaNeurosurgeonOperative Surgical ProceduresOutcomeParalysedPatientsPersonsPopulationPositioning AttributePrevalencePreventive treatmentProcessReaderResearchRotationRuptured AneurysmScanningSchemeSensitivity and SpecificityShapesSource CodeSpeechStenosisStrokeSurfaceSymptomsTechniquesTimeTrainingUnited StatesValidationVasculitisVasospasmVisualizationWorkX-Ray Computed Tomographyaccurate diagnosiscerebrovascularclinical diagnosisclinical imagingcomputer aided detectioncomputerizeddeep learningdeep learning modeldesigndisease diagnosisimage processingimaging Segmentationimaging modalityimprovedmalformationmortalityneurosurgerynovelopen sourceoperationshape analysisstatisticstool
项目摘要
The goal of this clinical informatics project is to develop computational techniques to model and analyze brain
blood vessels for detecting morphometric abnormalities that are hallmarks of cerebrovascular diseases (CVDs).
The project addresses an important challenge in neuroradiology and neurosurgery: how to accurately diagnose
CVDs on computed tomography angiography (CTA). CVDs include intracranial aneurysms, stroke, intracranial
vascular stenosis, dural fistula, and other disorders of the brain vasculature, and these diseases have severe
outcomes as they cause hemorrhage, stroke, neurological damage, and death. In fact, each year, CVDs cause
more than 100,000 deaths in the US, and an even larger population suffers permanent damage, including
stroke, paralysis, and loss of speech. If we can diagnose CVDs more accurately and promptly, mortality and
morbidity can be significantly reduced.
Brain imaging is a first line diagnostic for CVDs with the image hallmarks being brain blood vessel
abnormalities. Yet diagnosis is very challenging because a clinician needs to sift through and zoom in and out
of and rotate a large number of images to examine each blood vessel for malformation, whether it is a
narrowing or the formation of intracranial aneurysms on blood vessel walls. Similarly, a neurosurgeon needs to
read brain scans right before an operation to locate the positions of abnormalities.
Our specific aims of this project are to develop novel computational techniques including deep learning to
model and analyze blood vessels to detect abnormalities and highlight their locations for clinicians to examine
further. While computers are not yet sophisticated enough to make diagnoses like a trained clinician,
computers can perform more objectively and quickly, compared to human experts, the necessary complex
shape analysis and quantification, such as identifying abnormal widening or narrowing of blood vessels and
detecting protrusions on blood vessel walls. To address the request from clinicians that they would benefit
significantly from computer-aided detection of abnormalities and, once abnormalities are marked, they can
make highly accurate diagnosis and classification of the underlying CVDs, we designed an informatics
approach as a computer-aided tool to analyze CTA images. We will model both individual blood vessels and
the whole vasculature in the 3D space. Then, from the vasculature, we will develop and implement a multi-
channel deep learning model focused on shape analysis to detect blood vessel abnormalities. Finally,
abnormalities will be marked in colors in 3D to allow clinicians to make more accurate diagnoses, plan
preventative treatments, and perform precise surgeries to benefit patient health.
这个临床信息学项目的目标是发展计算技术来模拟和分析大脑
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey Young其他文献
Geoffrey Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey Young', 18)}}的其他基金
Computer aided diagnosis of cancer metastases in the brain
计算机辅助诊断脑部癌症转移
- 批准号:
10163013 - 财政年份:2016
- 资助金额:
$ 38.04万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.04万 - 项目类别:
Research Grant














{{item.name}}会员




