Risk-based Breast Cancer Screening and Surveillance in Community Practice - Admin Supplement for P3
社区实践中基于风险的乳腺癌筛查和监测 - P3 管理补充
基本信息
- 批准号:10164432
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-27 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AftercareAlgorithmsAreaAwardBreastBreast Cancer DetectionBreast Cancer Surveillance ConsortiumBreast Cancer survivorshipCalibrationClinicalCommunity PracticeDataDevelopmentEvaluationFailureFrequenciesFundingGoalsIndividualInvestigationLogistic RegressionsMalignant NeoplasmsMammographyMeasuresMethodologyMethodsModelingModernizationOutcomeParentsROC CurveRecording of previous eventsRecurrenceResearch PersonnelResourcesRiskSurveillance ModelingTimeTreatment outcomeValidationWomanWorkbasecancer typeclinical practicefollow-upimaging modalityimprovedinterestmachine learning methodmalignant breast neoplasmmodel developmentonline tutorialpredictive modelingresponsesurveillance imagingsurveillance strategyuptakeusability
项目摘要
PROJECT SUMMARY
This application is being submitted in response to the Notice of Special Interest (NOSI) identified as NOT-CA-
20-038. The goals of this supplement are to advance progress toward implementing risk-based imaging
surveillance for breast cancer in clinical practice. We propose to improve methodological approaches for
developing risk models for breast cancer imaging surveillance outcomes, including surveillance detected
second breast cancer (benefit) and interval invasive breast cancer (failure), and inform the development of an
optimal risk-based imaging surveillance strategy for individual women with primary breast cancer. This
proposal builds on the resources of the Breast Cancer Surveillance Consortium (BCSC) from more than
60,000 women with a personal history of breast cancer and more than 330,000 surveillance mammography
examinations. The investigators will leverage modern data-adaptive modeling approaches, specifically
regularized regression models and machine learning methods which can potentially enhance prediction
accuracy, to develop risk models of surveillance outcomes (Aim 1). The investigators propose a
comprehensive internal validation with multiple metrics to evaluate the risk models developed via alternative
methods for a full understanding of their utilities and trade-offs between models in improving breast cancer
survivorship while maintaining clinical usability and interpretability (Aim 2.1). Specifically, the investigators will
evaluate the area under the receiver operating characteristic curve (AUC) and the calibration of each risk
model developed in Aim 1, and conduct comparison across models using net reclassification improvement and
variable importance measures. Additionally, an online tutorial created using R Markdown is proposed to
accelerate uptake of best practices for modern risk model development and validation in other cancers (Aim
2.2). The evaluation and dissemination of alternative methodological modeling approaches in this supplement
will directly inform development of risk-stratified surveillance algorithms in breast and other cancer types.
项目摘要
本申请是为了响应被标识为NOT-CA的特别利益通知(NOSI)而提交的-
20-038.该补充的目标是推进实施基于风险的成像的进展
在临床实践中监测乳腺癌。我们建议改进方法,
制定乳腺癌影像监测结果的风险模型,包括监测发现的
第二次乳腺癌(受益)和间隔浸润性乳腺癌(失败),并告知一个
为患有原发性乳腺癌的个体女性提供最佳的基于风险的成像监测策略。这
该提案基于乳腺癌监测联盟(BCSC)的资源,
60,000名有乳腺癌个人史的妇女和超过330,000例监测乳房X光检查
考试研究人员将利用现代数据自适应建模方法,特别是
正则化回归模型和机器学习方法,可以潜在地增强预测
准确性,开发监测结果的风险模型(目标1)。调查人员提出了一个
通过多种指标进行全面的内部验证,以评估通过替代方法开发的风险模型
充分了解其效用的方法和模型之间的权衡,以改善乳腺癌
生存率,同时保持临床可用性和可解释性(目标2.1)。具体而言,调查人员将
评价受试者工作特征曲线下面积(AUC)和每种风险的校准
目标1中开发的模型,并使用净重新分类改进和
可变重要性度量此外,建议使用R Markdown创建在线教程,
加速采用最佳实践,用于其他癌症的现代风险模型开发和验证(Aim
2.2)。本补编中的替代方法学建模方法的评价和传播
将直接为乳腺癌和其他癌症类型的风险分层监测算法的开发提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KARLA M KERLIKOWSKE其他文献
KARLA M KERLIKOWSKE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KARLA M KERLIKOWSKE', 18)}}的其他基金
Evaluation of novel tomosynthesis density measures in breast cancer risk prediction
新型断层合成密度测量在乳腺癌风险预测中的评价
- 批准号:
10680241 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
New Risk Assessment Paradigm to Predict Screening Detection, Failures and False Alarms
新的风险评估范式可预测筛查检测、故障和误报
- 批准号:
9982825 - 财政年份:2020
- 资助金额:
$ 15万 - 项目类别:
New Risk Assessment Paradigm to Predict Screening Detection, Failures and False Alarms
新的风险评估范式可预测筛查检测、故障和误报
- 批准号:
9279002 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Radiomic phenotypes of breast parenchyma and association with breast cancer risk and detection
乳腺实质的放射组学表型及其与乳腺癌风险和检测的关联
- 批准号:
9897495 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
- 批准号:
8913697 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
- 批准号:
8601620 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
- 批准号:
8693976 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Automated Density Measures for Estimating Breast Cancer Risk and Therapy Response
用于估计乳腺癌风险和治疗反应的自动密度测量
- 批准号:
9120340 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 15万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 15万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant