Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
基本信息
- 批准号:10161852
- 负责人:
- 金额:$ 45.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnti-Inflammatory AgentsArterial Fatty StreakAtherosclerosisAttenuatedBindingBiochemicalCardiovascular DiseasesCell membraneCell physiologyCellsCellular ImmunityCholesterolCholesterol HomeostasisCytosolDataDendritic CellsDevelopmentDiseaseDyslipidemiasEnsureEventGenesGenetic ModelsGoalsGram-Positive BacteriaHealthHomeostasisImageImmuneImmunityImmunologic ReceptorsInfiltrationInflammationInflammatoryInflammatory ResponseInterferon-betaInterferonsIsotope LabelingIsotopesLaboratoriesLinkLipidsMass Spectrum AnalysisMembraneMetabolicMitochondriaModelingMolecularMovementMusMutationPathogenesisPathologicPathway interactionsPhysiologyPositioning AttributeProductionProteinsReagentRegulationRoleShotgunsSignal PathwaySignal TransductionSterilityStimulator of Interferon GenesTLR2 geneTLR3 geneTechniquesTechnologyTestingTherapeutic InterventionToll-like receptorsTracerWorkadvanced analyticsatherogenesisbasechemoproteomicscholesterol traffickingcytokinedesignexpectationfatty acid biosynthesishuman diseaseimmune functionlipid metabolismlipid transportlipidomelipidomicsloss of functionmacrophagemouse modelnovelnovel strategiesresponsetraffickingviral RNA
项目摘要
Project 2: Macrophage Lipid Homeostasis and Inflammatory Signaling
ABSTRACT/SUMMARY
The objective of Project 2 of this PPG is to understand how cellular lipid composition and lipid trafficking
influence the inflammatory function of macrophages. Although perturbations in lipid homeostasis are
recognized to be associated with inflammation in a number of human diseases, our understanding of “how”
and “why” remains limited. Recent work has revealed that pro-inflammatory signals reprogram the lipid
metabolic state of macrophages. It has also become clear that perturbations in lipid homeostasis can be
sensed by the inflammatory machinery of macrophages so as to induce and to regulate inflammatory
responses. Thus, lipid homeostasis and inflammation are interrelated, and perturbations in one affect the other.
In this project, our PPG team will combine advanced analytical mass spectrometry–based approaches with
genetic models of inflammation, with the goal of defining mechanisms by which inflammation drives
reprogramming of the lipidome (and vice versa). We will assess the consequences of changing the subcellular
levels of lipids on inflammatory signaling. Specific Aim 1 is to apply advanced analytic techniques to determine
how pro- and anti-inflammatory signals change the subcellular lipidome in macrophages. We will use mass
spectrometry approaches, including shotgun lipidomics, NanoSIMS imaging, and isotope labeling, to
understanding how pro- and anti-inflammatory signals influence lipid localization and trafficking in
macrophages. Specific Aim 2 is to determine the mechanisms by which alterations in cholesterol homeostasis
potentiate the STING signaling pathway. We will pursue our discovery that perturbations in de novo cholesterol
synthesis change type I IFN inflammatory responses via STING. Using a combination of biochemical
approaches, confocal and NanoSIMS imaging, and chemoproteomics, we will test the hypothesis that
cholesterol regulates STING function through direct binding. We will also test whether disease-associated
mutations in STING abrogate the regulatory impact of cholesterol. Specific Aim 3 is to determine the
importance of the STING signaling pathway on the development of dyslipidemia, inflammation, and
atherogenesis in mice. Type I IFNs have been shown to influence the pathogenesis of atherosclerosis, but the
molecular pathways underlying this sterile inflammatory response have not been elucidated. We will test the
hypothesis that the cGAS/STING inflammatory axis is required to generate type I IFN in the setting of
dyslipidemia and atherosclerosis. These studies will define the influence of the STING pathway on
dyslipidemia, inflammation, immune cell infiltration, and atheroma development. It is our expectation that our
proposed studies will define, at a molecular level, why dysregulation of macrophage lipid homeostasis drives
inflammation, and how inflammation influences macrophage cholesterol metabolism in cardiovascular disease.
Our PPG team is excited by our hypotheses, and we are positioned, with all of the experimental approaches,
reagents, and expert collaborators, to make rapid progress.
项目2:巨噬细胞脂质稳态和炎症信号传导
摘要/总结
本PPG项目2的目的是了解细胞脂质组成和脂质运输
影响巨噬细胞的炎症功能。虽然脂质稳态的扰动,
被认为与许多人类疾病中的炎症有关,我们对“如何”的理解
而“为什么”仍然是有限的。最近的研究表明,促炎信号重新编程脂质,
也已经清楚的是,脂质稳态的扰动可以是巨噬细胞的代谢状态。
由巨噬细胞的炎症机制感知,从而诱导和调节炎症
因此,脂质稳态和炎症是相互关联的,并且一个的扰动影响另一个。
在这个项目中,我们的PPG团队将联合收割机结合先进的分析质谱法,
炎症的遗传模型,目的是定义炎症驱动的机制,
我们将评估改变脂质体亚细胞结构的后果。
具体目标1是应用先进的分析技术来确定
促炎和抗炎信号如何改变巨噬细胞的亚细胞脂质体。
光谱法,包括鸟枪脂质组学,NanoSIMS成像和同位素标记,
了解促炎和抗炎信号如何影响脂质的定位和运输,
具体目标2是确定胆固醇稳态改变的机制,
加强STING信号通路。我们将继续研究我们的发现,
通过STING合成改变I型IFN炎症反应。
方法,共聚焦和NanoSIMS成像,和化学蛋白质组学,我们将测试的假设,
胆固醇通过直接结合调节STING功能。我们还将测试疾病相关的
STING中的突变消除了胆固醇的调节影响。具体目标3是确定
STING信号通路对血脂异常、炎症和
I型IFN已显示影响动脉粥样硬化的发病机制,但I型IFN的作用不明显。
这种无菌性炎症反应的分子途径尚未阐明。我们将检测
假设cGAS/STING炎性轴是在以下情况下产生I型IFN所必需的:
这些研究将确定STING途径对血脂异常和动脉粥样硬化的影响。
血脂异常,炎症,免疫细胞浸润和动脉粥样硬化的发展。这是我们的期望,
拟议的研究将在分子水平上定义为什么巨噬细胞脂质稳态失调会驱动
炎症,以及炎症如何影响心血管疾病中的巨噬细胞胆固醇代谢。
我们的PPG团队对我们的假设感到兴奋,我们的定位是,所有的实验方法,
试剂和专家合作者,以取得快速进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN J BENSINGER其他文献
STEVEN J BENSINGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN J BENSINGER', 18)}}的其他基金
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
- 批准号:
10639904 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
- 批准号:
10184535 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
- 批准号:
10591518 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
- 批准号:
10377523 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
- 批准号:
10186282 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Investigating the impact of a fatty acid-cRel inflammatory circuit in atherosclerosis
研究脂肪酸-cRel 炎症回路对动脉粥样硬化的影响
- 批准号:
10375587 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
CDKN2A couples lipid metabolism to ferroptosis in glioblastoma
CDKN2A 将脂质代谢与胶质母细胞瘤中的铁死亡结合起来
- 批准号:
10549326 - 财政年份:2021
- 资助金额:
$ 45.88万 - 项目类别:
Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
- 批准号:
10613971 - 财政年份:2019
- 资助金额:
$ 45.88万 - 项目类别:
Macrophage Lipid Homeostasis and Inflammatory Signaling
巨噬细胞脂质稳态和炎症信号传导
- 批准号:
10397414 - 财政年份:2019
- 资助金额:
$ 45.88万 - 项目类别:
Understanding the influence of SREBP signaling on CD4 T helper cell biology
了解 SREBP 信号传导对 CD4 T 辅助细胞生物学的影响
- 批准号:
9178626 - 财政年份:2015
- 资助金额:
$ 45.88万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 45.88万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 45.88万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 45.88万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 45.88万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 45.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 45.88万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 45.88万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 45.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists