Astroglial mechanisms in sleep homeostasis
星形胶质细胞睡眠稳态机制
基本信息
- 批准号:10163932
- 负责人:
- 金额:$ 61.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnatomyArousalAstrocytesAttentionBiologicalBrainCellsCircadian RhythmsCoupledCyclic AMPDataDevelopmentDrowsinessDrug TargetingElectroencephalographyEquilibriumEtiologyExcessive Daytime SleepinessExocytosisFeedbackG alpha q ProteinGTP-Binding ProteinsGene ExpressionGlial Fibrillary Acidic ProteinGlutamate TransporterHeterogeneityHomeostasisImageImpaired cognitionIn Situ HybridizationIon ChannelLeadLearningLigandsMeasurementMeasuresMechanicsMediatingMemoryMental disordersMetabolicMetabolismMethodsMicroscopyMolecularMood DisordersMorbidity - disease rateMorphologyMusNeurogliaNeuronsNeurotransmittersPathway interactionsPhospholipase CPlant RootsPlayPolysomnographyProcessProteinsREM SleepRoleSTIM1 geneSecond Messenger SystemsSignal PathwaySignal TransductionSignaling ProteinSleepSleep DeprivationSleep DisordersSleeplessnessSynapsesTechniquesTechnologyTestingTimeTranscriptUnited StatesWakefulnessawakebasal forebrainbasebrain cellcircadian pacemakerdesigner receptors exclusively activated by designer drugsdifferential expressiondigitalexperimental studyfrontal lobein vivoinnovationinsightminiaturizenervous system disorderneurotransmitter uptakenew therapeutic targetnext generation sequencingnon rapid eye movementnovelpromoterresponsesingle-cell RNA sequencingsleep abnormalitiestranscriptometwo photon microscopytwo-photon
项目摘要
Summary
Sleep problems such as excessive daytime sleepiness and insomnia are common in the United States. They
are found in many psychiatric and neurological disorders and cause deficits in attention, learning and memory.
Some sleep problems may be caused by disrupted circadian rhythms, but others may reflect changes in sleep
homeostasis; an enigmatic regulatory mechanism that increases sleep drive, sleep amounts and sleep
intensity as a function of prior time awake. The cellular mechanisms of sleep homeostasis are incompletely
described but have traditionally thought to be neuronal. We, however, have shown that glial astrocytes are part
of this mechanism. More specifically, we propose that sleep homeostasis arises from interactions between
astrocytes and neurons. We therefore hypothesize that the normal compensatory response to sleep loss
involves intracellular and molecular changes in astrocytes. This A1 submission has been extensively revised in
accordance with initial review. New experiments and preliminary data are included (indicated by red font).
We will test this overall hypothesis with three innovative approaches in vivo. In Aim 1, we combine genetically
encoded Ca2+ indicator (GECI) astrocyte imaging with simultaneous polysomnographic recording in
unanesthetized mice in vivo. This allows us to measure astrocyte Ca2+ dynamics in natural states of rapid-
eye-movement (REM) sleep, non(N)REM sleep and wakefulness using both 2-photon and epiflorescent
microscopy. We also more directly test the necessity of intracellular Ca2+ in sleep homeostasis by inducibly
reducing this signal in vivo and measuring changes in sleep expression and homeostasis. In Aim 2, we use
inducible molecular techniques to alter the major signaling pathways known to exist in astrocytes (i.e. Gq, Gi
and Gs proteins) and examine the resulting changes in sleep expression and homeostasis. In Aim 3, we use
next generation sequencing technology (single-cell RNA sequencing (scRNA-seq)) to isolate additional (but
currently unknown) signaling pathways that are involved in astrocyte-mediated sleep homeostasis.
Mammalian astrocytes are highly diverse based on morphology, cell-specific markers (e.g. GFAP+), ion
channels, glutamate transporters and metabolic substrates. The relative contribution of these different
astrocytes to sleep is unknown. scRNA-seq provides a new and powerful method to address this problem.
Impact: Our characterization of a novel glial sleep mechanism will provide new insights into the etiology of
abnormal sleep and arousal. Our experiments will also provide new insights into the function of non-neuronal
brain cells. This in turn can lead to the development of new therapeutics that target glia, rather than neurons.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARCOS G FRANK其他文献
MARCOS G FRANK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARCOS G FRANK', 18)}}的其他基金
Exploratory studies of spontaneous cortical activity in visual cortical development
视觉皮层发育中自发皮层活动的探索性研究
- 批准号:
10527992 - 财政年份:2022
- 资助金额:
$ 61.65万 - 项目类别:
Exploratory studies of spontaneous cortical activity in visual cortical development
视觉皮层发育中自发皮层活动的探索性研究
- 批准号:
10684752 - 财政年份:2022
- 资助金额:
$ 61.65万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 61.65万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 61.65万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 61.65万 - 项目类别:
Studentship














{{item.name}}会员




