Inhibiting sequential biosynthetic steps of a fungal-specific organelle
抑制真菌特异性细胞器的连续生物合成步骤
基本信息
- 批准号:10165488
- 负责人:
- 金额:$ 47.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-15 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAffinityAmphotericinAnabolismAntibioticsAntifungal AgentsBiochemistryBiologicalBiological AssayCandidaCandida albicansCandida aurisCandidiasisCell WallCell physiologyCellsCenters for Disease Control and Prevention (U.S.)Cessation of lifeChemicalsCombined AntibioticsComplexCotrimoxazoleDefectDevelopmentDiseaseDrug TargetingElementsEquilibriumFundingGeneticGlucansGlucoseGlucosyltransferaseGoalsGrowthHomeostasisHomologous GeneHumanHypersensitivityImmunocompromised HostIndividualInfectionInorganic Phosphate TransporterLeadLibrariesLinkMicafunginMucoralesMycosesNucleotidesNutritionalOrganellesOutcomeOxidative StressPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhenotypePolymersProcessProductionResistanceSignal TransductionSirolimusSpecificityStressSulfamethoxazoleSystemTetrahydrofolatesToxic effectTrimethoprimTrimethoprim-SulfamethoxazoleUnited StatesUridine DiphosphateValidationVirulenceWorkantimicrobialattributable mortalitybasechemical geneticsclinical caredesigndrug developmentdrug discoveryemerging pathogenexperiencefitnessfungusglucan synthasehigh throughput screeninginhibitor/antagonistinorganic phosphatemetabolomicsmicrobialnovelnovel therapeuticsoptimal treatmentspathogenic fungusresponsescreeningsugar nucleotide
项目摘要
PROJECT SUMMARY/ABSTRACT
Candida albicans is the most frequently isolated fungus causing invasive disease in the United States.
These infections are dreaded complications of serious illnesses, especially in hospitalized or
immunocompromised patients. C. albicans infections are challenging to eradicate, and are still estimated
to lead to death in 20% of the affected patients. Currently only 3 classes of antifungal drugs are available
to treat invasive fungal infections. Antifungal drug development is difficult because of the similarity between
fungal and human cells, which leads to unacceptable toxicity of many compounds that damage or kill fungi.
Developing antifungal agents whose targets are absent in human cells would circumvent this difficulty.
Increasing potency of antifungal drugs could also lead to better outcomes. A paradigm for increased
antimicrobial potency is the important combination antibiotic Cotrimoxazole, whose two components target
sequential steps in the biosynthesis of tetrahydrofolate.
The goal of this proposal is to find compounds that can be developed into specific inhibitors of two
cellular processes unique to fungi, whose combination could give rise to a more potent antifungal agent.
Two fungal cellular processes that are fundamentally different or absent in humans are phosphate
homeostasis and cell wall construction. We previously found that the major C. albicans high-affinity
phosphate transporter Pho84 is required for normal nutritional (Target of Rapamycin-) signaling, cell wall
stress- and oxidative stress resistance, hyphal growth and virulence. Since humans manage their
phosphate balance completely differently from fungi, blocking Pho84 is not predicted to impact human
cellular functions. Pho84 is highly conserved across the fungal kingdom, including in emerging pathogens
like Candida auris. Cells that lack Pho84 contain diminished concentrations of nucleotides, whose
production requires ample intracellular phosphate supplies, and of their downstream metabolites,
nucleotide sugars. Nucleotide sugars are precursors for biosynthesis of the major cell wall polymers. We
propose to take advantage of this defect to sequentially perturb major steps in cell wall biosynthesis by
combining inhibition of Pho84 with inhibition of glucan biosynthesis. To do this, we established a novel
high-throughput assay system to detect specific inhibitors of these fungal targets. We will prioritize hit
compounds according to their biological effects in virulence-associated or essential cellular processes, and
according to their chemical features. This work will lay the ground to apply the paradigm of stepwise
inhibition of a critical biosynthetic process to antifungal drug development. The proposal is intended to
select screen hits that meet defined biological and medicinal chemistry criteria for further development.
项目概要/摘要
白色念珠菌是美国最常见的引起侵袭性疾病的分离真菌。
这些感染是严重疾病的可怕并发症,尤其是在住院或住院期间
免疫功能低下的患者。白色念珠菌感染难以根除,且仍处于估计状态
导致 20% 受影响患者死亡。目前只有3类抗真菌药物可用
治疗侵袭性真菌感染。由于两者的相似性,抗真菌药物的开发很困难
真菌和人类细胞,这导致许多损害或杀死真菌的化合物具有不可接受的毒性。
开发人类细胞中不存在靶点的抗真菌药物将可以解决这一难题。
增强抗真菌药物的效力也可能带来更好的结果。增加的范例
抗菌效力是重要的复合抗生素复方新诺明,其两种成分针对
四氢叶酸生物合成的连续步骤。
该提案的目标是找到可以开发成两种药物特异性抑制剂的化合物
真菌特有的细胞过程,它们的结合可以产生更有效的抗真菌剂。
磷酸盐是两种在人类中根本不同或不存在的真菌细胞过程
体内平衡和细胞壁构建。我们之前发现主要的白色念珠菌具有高亲和力
磷酸盐转运蛋白 Pho84 是正常营养(雷帕霉素靶标-)信号传导、细胞壁所必需的
应激和氧化应激抗性、菌丝生长和毒力。由于人类管理自己的
磷酸盐平衡与真菌完全不同,阻断 Pho84 预计不会影响人类
细胞功能。 Pho84 在整个真菌界中高度保守,包括在新兴病原体中
如耳念珠菌。缺乏 Pho84 的细胞含有浓度降低的核苷酸,其
生产需要充足的细胞内磷酸盐供应及其下游代谢物,
核苷酸糖。核苷酸糖是主要细胞壁聚合物生物合成的前体。我们
提议利用这一缺陷依次扰乱细胞壁生物合成的主要步骤
将 Pho84 的抑制与葡聚糖生物合成的抑制相结合。为此,我们创作了一部小说
高通量检测系统可检测这些真菌靶点的特异性抑制剂。我们将优先打击
根据其在毒力相关或必需的细胞过程中的生物效应的化合物,以及
根据其化学特性。这项工作将为应用逐步范式奠定基础
抑制抗真菌药物开发的关键生物合成过程。该提案旨在
选择符合定义的生物和药物化学标准的屏幕点击以进行进一步开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JULIA R KOEHLER其他文献
JULIA R KOEHLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JULIA R KOEHLER', 18)}}的其他基金
Inhibiting sequential biosynthetic steps of a fungal-specific organelle
抑制真菌特异性细胞器的连续生物合成步骤
- 批准号:
10392448 - 财政年份:2020
- 资助金额:
$ 47.38万 - 项目类别:
Compounds that block a novel Candida albicans target
阻断新型白色念珠菌靶标的化合物
- 批准号:
10596201 - 财政年份:2019
- 资助金额:
$ 47.38万 - 项目类别:
Compounds that block a novel Candida albicans target
阻断新型白色念珠菌靶标的化合物
- 批准号:
10335276 - 财政年份:2019
- 资助金额:
$ 47.38万 - 项目类别:
Bridging Neglect: improved access to high-quality heart health information and care for communities at risk of Chagas disease
弥合忽视:改善有恰加斯病风险的社区获得高质量心脏健康信息和护理的机会
- 批准号:
9982430 - 财政年份:2019
- 资助金额:
$ 47.38万 - 项目类别:
Bridging Neglect: improved access to high-quality heart health information and care for communities at risk of Chagas disease
弥合忽视:改善有恰加斯病风险的社区获得高质量心脏健康信息和护理的机会
- 批准号:
9811672 - 财政年份:2019
- 资助金额:
$ 47.38万 - 项目类别:
Compounds that block a novel Candida albicans target
阻断新型白色念珠菌靶标的化合物
- 批准号:
10320221 - 财政年份:2019
- 资助金额:
$ 47.38万 - 项目类别:
The opportunist Candida albicans: yeast proliferation and nutritional signaling
机会主义白色念珠菌:酵母增殖和营养信号
- 批准号:
8446786 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
The opportunist Candida albicans: yeast proliferation and nutritional signaling
机会主义白色念珠菌:酵母增殖和营养信号
- 批准号:
8585812 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
The opportunist Candida albicans: yeast proliferation and nutritional signaling
机会主义白色念珠菌:酵母增殖和营养信号
- 批准号:
9188792 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
The opportunist Candida albicans: yeast proliferation and nutritional signaling
机会主义白色念珠菌:酵母增殖和营养信号
- 批准号:
8960326 - 财政年份:2012
- 资助金额:
$ 47.38万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 47.38万 - 项目类别:
Continuing Grant














{{item.name}}会员




