Type II Afferents and Cochlear Damage
II 型传入神经和耳蜗损伤
基本信息
- 批准号:10164751
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-16 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Acoustic TraumaAction PotentialsAcuteAgeAnatomyAntibioticsAntibodiesBiological MarkersC FiberCalciumCochleaCre driverCuesDRD2 geneDoseDrug Delivery SystemsElectron MicroscopyElectrophysiology (science)Enterobacteria phage P1 Cre recombinaseFiberFutureG-Protein-Coupled ReceptorsGeneticGenetic ModelsGlutamatesGoalsHearingHumanHyperactivityHyperacusisHyperalgesiaHypersensitivityInjectionsLabelLabyrinthLigandsMembraneMethodsMicrotomyModelingMolecularMusNeurobiologyNociceptionNociceptorsOuter Hair CellsPatternPerceptionPharmacologyPhysiologicalPropertyProteinsProtocols documentationRattusReporterRoleSiteSpecificityStructureSynapsesTestingTissuesToxinTransgenic ModelTraumaTyrosine 3-MonooxygenaseValidationWorkanimal tissuebasecell injurydesigner receptors exclusively activated by designer drugsexperimental studyextracellularhearing impairmentlight microscopymouse modelnerve supplynovelnoxacusisoptogeneticsototoxicitypost-traumapostsynapticpreventprogramspromoterresponseround windowsoundtherapeutic targettoolvoltage
项目摘要
This proposal aims to test the hypothesis that type II afferents serve as cochlear nociceptors.
Taking cues from the human complaint of hyperacusis after hearing loss, we will examine the structure
and function of type II afferents in normal and post‐trauma cochleas. The working hypothesis is that
painful hyperacusis, noxacusis, includes hyperactivity of type II afferents, by analogy to hyperalgesia of
somatic nociceptive C‐fibers. Thus we will examine type II structure and function in normal and post‐trauma
cochleas of rats and mice. In parallel we will investigate the properties of surviving outer hair cells in post‐
trauma cochleas. Our methods include: ex vivo electrophysiology, light and electron microscopy, utilization
of optogenetic and chemogenetic tools,and validation and quantification of mouse models in which type II
specific bio‐markers are expressed.
A necessary first step is to extend our ex vivo experimental approach to older cochleas so that
changes wrought by acoustic trauma can be compared to the normal condition. We will compare
damaging sound, ototoxic antibiotics and genetically encoded biotoxins to produce experimentally
tractable effects on tissue for ex vivo experiments. The properties and synaptic connections of type II
afferents and outer hair cells will be examined in the excised cochlear tissue of these animals. We will
continue to explore type II specific genetic mouse models. Genetically‐encoded reporter proteins,
voltage‐ and calcium‐sensitive indicators, biotoxins, and opto‐ and chemo‐genetic modulators have
become highly informative tools in neurobiology generally and for the inner ear specifically. Our
ongoing work has characterized one mouse line, tyrosine hydroxylase promoter driven Cre‐recombinase
expression. Three other candidate type II specific Cre lines will be validated and quantified. With such
transgenic models it becomes possible to study innervation patterns by expression of fluorescent
reporter proteins, and to activate, eliminate, or modulate type II activity for anatomical and physiological
studies. Cre‐dependent expression of genetically‐modified G‐protein‐coupled receptors (DREADDS) will
provide mice in which type II activity can be increased or decreased by injection of a novel synthetic
ligand, depending on the specific construct. Varying combinations of systemic and round window drug
delivery will be employed to increase the specificity of experimental manipulations.
The over‐arching goal of this program of experiments is to complete the description of type II
afferents, a still‐unresolved component of cochlear innervation. The working hypothesis is that these
serve as cochlear nociceptors. If correct these are a likely neurobiological substrate for noxacusis
(painful hyperacusis). By defining the basic cellular and molecular mechanisms of type II function and
plasticity, future therapeutic targets can be identified to ameliorate or prevent noxacusis.
该提议旨在检验II型传入神经作为耳蜗伤害感受器的假设。
从人类听力损失后的听觉过敏症状中得到线索,
II型传入神经在正常和创伤后耳蜗中的功能。工作假设是,
疼痛性听觉过敏,即noxacusis,包括II型传入神经的活动过度,类似于
躯体伤害感受C纤维因此,我们将检查正常和创伤后的II型结构和功能。
大鼠和小鼠的耳蜗。 与此同时,我们将调查后,存活的外毛细胞的属性。
外伤耳蜗我们的方法包括:离体电生理学,光学和电子显微镜,利用
光遗传学和化学遗传学工具,以及验证和定量小鼠模型,其中II型
表达特定的生物标记物。
必要的第一步是将我们的离体实验方法扩展到老年耳蜗,以便
由声损伤引起的变化可以与正常情况进行比较。 我们将比较
破坏性的声音,耳毒性抗生素和基因编码的生物毒素,
用于离体实验的对组织的易处理的作用。 第二型的特性和突触连接
将在这些动物的切除的耳蜗组织中检查传入和外毛细胞。 我们将
继续探索II型特异性遗传小鼠模型。 基因编码的报告蛋白
电压和钙敏感指示剂、生物毒素以及光遗传和化学遗传调节剂,
成为神经生物学的重要工具,特别是对内耳。 我们
正在进行的工作表征了一种小鼠系,酪氨酸羟化酶启动子驱动的Cre重组酶
表情 将验证和定量其他三种候选II型特异性Cre系。 与这些
转基因模型,有可能研究神经支配模式的表达荧光
报告蛋白,并激活,消除或调节II型活性,用于解剖和生理
问题研究基因修饰的G蛋白偶联受体(DREADDS)的Cre依赖性表达将
本发明提供了通过注射新的合成物,可以增加或降低II型活性的小鼠,
配体,这取决于具体的构建体。 全身和圆窗药物的不同组合
将使用递送来增加实验操作的特异性。
本实验计划的总体目标是完成对II型的描述
传入,耳蜗神经支配的一个尚未解决的组成部分。工作假设是,这些
作为耳蜗伤害感受器。如果正确的话,这些可能是伤害性听觉的神经生物学基质
(疼痛性听觉过敏)。通过定义II型功能的基本细胞和分子机制,
可塑性,未来的治疗目标可以确定,以改善或预防疼痛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELISABETH GLOWATZKI其他文献
ELISABETH GLOWATZKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELISABETH GLOWATZKI', 18)}}的其他基金
Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
- 批准号:
8652148 - 财政年份:2014
- 资助金额:
$ 39.25万 - 项目类别:
Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
- 批准号:
9198448 - 财政年份:2014
- 资助金额:
$ 39.25万 - 项目类别:
Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
- 批准号:
8791310 - 财政年份:2014
- 资助金额:
$ 39.25万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8720093 - 财政年份:2012
- 资助金额:
$ 39.25万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8549857 - 财政年份:2012
- 资助金额:
$ 39.25万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8411050 - 财政年份:2012
- 资助金额:
$ 39.25万 - 项目类别:
AFFERENT SYNAPTIC TRANSMISSION IN THE MAMMALIAN COCHLEA
哺乳动物耳蜗中的传入突触传递
- 批准号:
7931014 - 财政年份:2009
- 资助金额:
$ 39.25万 - 项目类别:
Afferent synaptic transmission in the mammalian cochlea
哺乳动物耳蜗中的传入突触传递
- 批准号:
6839464 - 财政年份:2004
- 资助金额:
$ 39.25万 - 项目类别:
Afferent synaptic transmission in the mammalian cochlea
哺乳动物耳蜗中的传入突触传递
- 批准号:
7151139 - 财政年份:2004
- 资助金额:
$ 39.25万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 39.25万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 39.25万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 39.25万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 39.25万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 39.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




