Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
基本信息
- 批准号:8652148
- 负责人:
- 金额:$ 38.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-13 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAction PotentialsAffectAfferent PathwaysAntibodiesBenign paroxysmal positional vertigoBrainCell membraneCholinergic ReceptorsComplexCoupledCrista ampullarisDataDiseaseEquilibriumExcitatory Postsynaptic PotentialsFeedbackFiberFrequenciesFunctional disorderGenerationsGlutamatesHairHair CellsHeadImageImpairmentLabelLabyrinthLeadLifeMembraneMembrane PotentialsMeniere&aposs DiseaseMotionMotorNegative ReinforcementsNerve FibersOrganPatternPerceptionPeripheralPhysiologicalPlayPositive ReinforcementsPotassium ChannelPreparationPropertyProteinsRattusReflex actionResearch DesignRestRodentRoleRotationSemicircular canal structureSensorySensory HairShapesSignal TransductionStimulusSymptomsSynapsesSynaptic CleftSynaptic TransmissionSystemType I Hair CellType II Hair CellVertigoVestibular Nervecell typecholinergiccontrolled releasegazein vivonerve supplypatch clamppostsynapticpublic health relevancereceptorreceptor couplingresponsesignal processingtransmission process
项目摘要
Project Summary
The vestibular organs of the inner ear convey signals about head motions to the brain, resulting in motor
reflexes that maintain gaze and balance as well as the perception of balance and orientation. Dysfunction of
the vestibular system can therefore substantially affect the ability to lead our everyday lives. Peripheral
vestibular dysfunctions, like benign paroxysmal positional vertigo (BPPV) and Meniere's disease, lead to
disabling episodes of vertigo and other symptoms. To analyze the pathophysiology of such diseases, it is
crucial to understand how head motion signals are processed in the vestibular peripheral organs.
In the crista, the sensory organ of the semicircular canals, the sensory hair cells, respond to head
rotations with a deflection of their hair bundles, activating hair cell receptor potentials. Type I hair cells are
close to completely ensheathed by a postsynaptic calyx ending of the afferent vestibular nerve fiber, a unique
feature of the vestibular periphery, and type II hair cells are contacted by fibers with the more conventional
bouton endings. The innervation pattern of these hair cell types is quite complex, yet follows a specific morpho-
physiological pattern, and results in afferent fibers with differences in their response properties, for example in
their regularity of resting discharge, their response properties to external stimuli and efferent inputs.
Here we investigate synaptic transmission at the highly specialized type I hair cell/calyx synapse with
the aim to understand the mechanisms that underlie firing patterns of the calyx afferent fibers. We have
developed a preparation of excised cristae from 2-4 week old rodents to perform electrophysiological
recordings from type I hair cells and calyx afferents, for some questions simultaneously. Using confocal
analysis, we also characterize the morphological features of calyx afferents and assess the localization of
specific synaptic proteins using antibody labeling or live imaging with fluorescently coupled markers.
In Aim 1, we characterize the relation of hair cell membrane potential and afferent firing rate. We have
found that glutamate accumulation and spillover in the synaptic cleft induces slow membrane potential
changes and subsequent modulation of the afferent firing rate. We investigate the contribution of release
properties and glutamatergic synaptic transmission to shaping the postsynaptic response pattern.
Aim 2 investigates whether a cholinergic feedback loop from the calyx to the type I hair cell exists that
may modulate afferent transmission. Here we put forward a new concept, including a calyx to hair cell
feedback loop that may explain some of the in vivo recorded response patterns of calyx afferent firing.
In Summary, we investigate the cellular mechanisms underlying calyx afferent firing properties. These
studies are designed to gain a better understanding of possible vestibular peripheral dysfunctions, a
prerequisite for developing treatments for such impairments.
项目摘要
内耳的前庭器官向大脑传递有关头部运动的信号,从而产生运动
保持凝视和平衡以及对平衡和方向的感知的反射。失调症
因此,前庭系统可以很大程度上影响我们日常生活的能力。外围
前庭功能障碍,如良性阵发性位置性眩晕(BPPV)和梅尼埃病,会导致
使眩晕和其他症状的发作失效。要分析这些疾病的病理生理学,它是
对于了解头部运动信号在前庭外周器官中是如何处理的至关重要。
在眉骨,半规管的感觉器官,即感觉性毛细胞,对头部作出反应。
随着发束的偏转而旋转,激活毛细胞感受器潜力。I型毛细胞是
几乎完全被突触后的前庭神经纤维的末端所包裹,这是一种独特的
前庭外周的特点,和II型毛细胞是由纤维接触的,比较常规
鲍顿的结局。这些毛细胞类型的神经支配模式相当复杂,但遵循特定的形态。
生理模式,并导致传入纤维的反应特性不同,例如
它们的静息放电规律、对外界刺激和传出输入的反应特性。
在这里,我们研究了高度专门化的I型毛细胞/肾盏突触的突触传递
目的是了解花萼传入纤维的放电模式背后的机制。我们有
研制了一种用于电生理的2-4周龄啮齿类动物切除的脊骨制备方法。
来自I型毛细胞和花萼传入的录音,同时回答一些问题。使用共焦
分析,我们还表征了花萼传入的形态特征,并评估了
使用抗体标记的特定突触蛋白或荧光偶联标记的实时成像。
在目标1中,我们描述了毛细胞膜电位与传入放电频率的关系。我们有
研究发现,谷氨酸在突触裂隙中的积累和溢出导致膜电位减慢
传入放电率的变化和随后的调制。我们调查了发布的贡献
特性和谷氨酸能突触传递以塑造突触后反应模式。
目的2研究从花萼到I型毛细胞的胆碱能反馈环是否存在
可以调制传入传输。在这里,我们提出了一个新的概念,包括毛细胞的花萼
反馈环路,可以解释体内记录的一些花萼传入放电的反应模式。
综上所述,我们研究了花萼传入放电特性的细胞机制。这些
研究旨在更好地了解可能的前庭周围功能障碍,
为此类损伤开发治疗方法的先决条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELISABETH GLOWATZKI其他文献
ELISABETH GLOWATZKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELISABETH GLOWATZKI', 18)}}的其他基金
Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
- 批准号:
9198448 - 财政年份:2014
- 资助金额:
$ 38.21万 - 项目类别:
Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
- 批准号:
8791310 - 财政年份:2014
- 资助金额:
$ 38.21万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8720093 - 财政年份:2012
- 资助金额:
$ 38.21万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8549857 - 财政年份:2012
- 资助金额:
$ 38.21万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8411050 - 财政年份:2012
- 资助金额:
$ 38.21万 - 项目类别:
AFFERENT SYNAPTIC TRANSMISSION IN THE MAMMALIAN COCHLEA
哺乳动物耳蜗中的传入突触传递
- 批准号:
7931014 - 财政年份:2009
- 资助金额:
$ 38.21万 - 项目类别:
Afferent synaptic transmission in the mammalian cochlea
哺乳动物耳蜗中的传入突触传递
- 批准号:
6839464 - 财政年份:2004
- 资助金额:
$ 38.21万 - 项目类别:
Afferent synaptic transmission in the mammalian cochlea
哺乳动物耳蜗中的传入突触传递
- 批准号:
7151139 - 财政年份:2004
- 资助金额:
$ 38.21万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 38.21万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 38.21万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 38.21万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 38.21万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 38.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)