Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
基本信息
- 批准号:8652148
- 负责人:
- 金额:$ 38.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-01-13 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcetylcholineAction PotentialsAffectAfferent PathwaysAntibodiesBenign paroxysmal positional vertigoBrainCell membraneCholinergic ReceptorsComplexCoupledCrista ampullarisDataDiseaseEquilibriumExcitatory Postsynaptic PotentialsFeedbackFiberFrequenciesFunctional disorderGenerationsGlutamatesHairHair CellsHeadImageImpairmentLabelLabyrinthLeadLifeMembraneMembrane PotentialsMeniere&aposs DiseaseMotionMotorNegative ReinforcementsNerve FibersOrganPatternPerceptionPeripheralPhysiologicalPlayPositive ReinforcementsPotassium ChannelPreparationPropertyProteinsRattusReflex actionResearch DesignRestRodentRoleRotationSemicircular canal structureSensorySensory HairShapesSignal TransductionStimulusSymptomsSynapsesSynaptic CleftSynaptic TransmissionSystemType I Hair CellType II Hair CellVertigoVestibular Nervecell typecholinergiccontrolled releasegazein vivonerve supplypatch clamppostsynapticpublic health relevancereceptorreceptor couplingresponsesignal processingtransmission process
项目摘要
Project Summary
The vestibular organs of the inner ear convey signals about head motions to the brain, resulting in motor
reflexes that maintain gaze and balance as well as the perception of balance and orientation. Dysfunction of
the vestibular system can therefore substantially affect the ability to lead our everyday lives. Peripheral
vestibular dysfunctions, like benign paroxysmal positional vertigo (BPPV) and Meniere's disease, lead to
disabling episodes of vertigo and other symptoms. To analyze the pathophysiology of such diseases, it is
crucial to understand how head motion signals are processed in the vestibular peripheral organs.
In the crista, the sensory organ of the semicircular canals, the sensory hair cells, respond to head
rotations with a deflection of their hair bundles, activating hair cell receptor potentials. Type I hair cells are
close to completely ensheathed by a postsynaptic calyx ending of the afferent vestibular nerve fiber, a unique
feature of the vestibular periphery, and type II hair cells are contacted by fibers with the more conventional
bouton endings. The innervation pattern of these hair cell types is quite complex, yet follows a specific morpho-
physiological pattern, and results in afferent fibers with differences in their response properties, for example in
their regularity of resting discharge, their response properties to external stimuli and efferent inputs.
Here we investigate synaptic transmission at the highly specialized type I hair cell/calyx synapse with
the aim to understand the mechanisms that underlie firing patterns of the calyx afferent fibers. We have
developed a preparation of excised cristae from 2-4 week old rodents to perform electrophysiological
recordings from type I hair cells and calyx afferents, for some questions simultaneously. Using confocal
analysis, we also characterize the morphological features of calyx afferents and assess the localization of
specific synaptic proteins using antibody labeling or live imaging with fluorescently coupled markers.
In Aim 1, we characterize the relation of hair cell membrane potential and afferent firing rate. We have
found that glutamate accumulation and spillover in the synaptic cleft induces slow membrane potential
changes and subsequent modulation of the afferent firing rate. We investigate the contribution of release
properties and glutamatergic synaptic transmission to shaping the postsynaptic response pattern.
Aim 2 investigates whether a cholinergic feedback loop from the calyx to the type I hair cell exists that
may modulate afferent transmission. Here we put forward a new concept, including a calyx to hair cell
feedback loop that may explain some of the in vivo recorded response patterns of calyx afferent firing.
In Summary, we investigate the cellular mechanisms underlying calyx afferent firing properties. These
studies are designed to gain a better understanding of possible vestibular peripheral dysfunctions, a
prerequisite for developing treatments for such impairments.
项目摘要
内耳的前庭器官将头部运动的信号传递给大脑,导致运动
保持凝视和平衡的反射以及对平衡和方向的感知。功能障碍
因此,前庭系统可以极大地影响我们日常生活的能力。外围
前庭功能障碍,如良性阵发性位置性眩晕(BPPV)和梅尼埃病,导致
眩晕和其他症状的致残性发作。要分析这类疾病的病理生理,
这对于理解头部运动信号如何在前庭外周器官中处理至关重要。
在脊部,半规管的感觉器官,感觉毛细胞,对头部的反应,
旋转与偏转的头发束,激活毛细胞受体电位。I型毛细胞是
接近完全被传入前庭神经纤维的突触后萼末梢包被,这是一种独特的
前庭外周的特征,和II型毛细胞接触的纤维与更传统的
饰扣结尾。这些毛细胞类型的神经支配模式是相当复杂的,但遵循特定的形态,
生理模式,并导致传入纤维的反应特性不同,例如,
静息放电的规律性,对外部刺激和传出输入的反应特性。
在这里,我们研究了高度特化的I型毛细胞/萼突触的突触传递,
目的是了解花萼传入纤维放电模式的机制。我们有
从2 - 4周龄的啮齿动物中开发了一种用于进行电生理检查的切除嵴的制备物,
录音从I型毛细胞和花萼传入,同时为一些问题。使用共聚焦
分析,我们还描述了花萼传入的形态特征,并评估了
使用抗体标记或用荧光偶联标记物的活体成像来检测特异性突触蛋白。
目的1:研究毛细胞膜电位与传入放电频率的关系。我们有
发现谷氨酸在突触间隙中的积累和溢出诱导慢膜电位
变化和随后的传入放电率的调制。我们调查了释放的贡献
性质和突触传递的突触后反应模式的塑造。
目的2研究从毛萼到I型毛细胞是否存在胆碱能反馈回路,
可以调节传入传递。在这里我们提出了一个新的概念,包括一个花萼到毛细胞
反馈回路,可以解释一些在体内记录的反应模式的花萼传入放电。
总之,我们研究了花萼传入放电特性的细胞机制。这些
研究旨在更好地了解可能的前庭外周功能障碍,
这是开发此类损伤治疗方法的先决条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELISABETH GLOWATZKI其他文献
ELISABETH GLOWATZKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELISABETH GLOWATZKI', 18)}}的其他基金
Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
- 批准号:
9198448 - 财政年份:2014
- 资助金额:
$ 38.21万 - 项目类别:
Synaptic mechanisms underlying vestibular nerve fiber activity
前庭神经纤维活动的突触机制
- 批准号:
8791310 - 财政年份:2014
- 资助金额:
$ 38.21万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8720093 - 财政年份:2012
- 资助金额:
$ 38.21万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8411050 - 财政年份:2012
- 资助金额:
$ 38.21万 - 项目类别:
Short-term plasticity & temporal precision at the inner hair cell ribbon synapse
短期可塑性
- 批准号:
8549857 - 财政年份:2012
- 资助金额:
$ 38.21万 - 项目类别:
AFFERENT SYNAPTIC TRANSMISSION IN THE MAMMALIAN COCHLEA
哺乳动物耳蜗中的传入突触传递
- 批准号:
7931014 - 财政年份:2009
- 资助金额:
$ 38.21万 - 项目类别:
Afferent synaptic transmission in the mammalian cochlea
哺乳动物耳蜗中的传入突触传递
- 批准号:
6839464 - 财政年份:2004
- 资助金额:
$ 38.21万 - 项目类别:
Afferent synaptic transmission in the mammalian cochlea
哺乳动物耳蜗中的传入突触传递
- 批准号:
7151139 - 财政年份:2004
- 资助金额:
$ 38.21万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 38.21万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 38.21万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 38.21万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 38.21万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 38.21万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 38.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)