Lung-on-a-Chip Disease Models for Efficacy Testing (COVID-19 Competitive Revision)
用于功效测试的芯片肺疾病模型(COVID-19 竞争性修订版)
基本信息
- 批准号:10167350
- 负责人:
- 金额:$ 92.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoV3-DimensionalAnimalsApicalBiological AssayBloodCOVID-19COVID-19 pandemicCell Differentiation processCell LineCell LineageCellsClinical ResearchClinical TrialsCoronavirusCoupledDataDevelopmentDevicesDisease modelDoctor of PhilosophyDoseDrug KineticsEpithelialEpitheliumExhibitsFDA approvedFundingFutureGrantHumanImmuneIn VitroIncidenceInfectionInfection preventionInflammationInflammatory ResponseInfluenzaIntestinesLeadLungLung infectionsMarylandMediatingMicrofluidic MicrochipsMicrofluidicsModelingMucous body substanceMusOrganOrganoidsPatientsPharmaceutical PreparationsPharmacologic SubstancePharmacotherapyProductionPropertyProteinsPublic HealthReportingResearch PersonnelSafetyStructureStructure-Activity RelationshipSurfaceSynthesis ChemistryTMPRSS2 geneTechnologyTestingTherapeuticTherapeutic AgentsTissue MicroarrayUnited States National Institutes of HealthVillusViralVirulenceVirusVirus DiseasesWorkbasechemical synthesischeminformaticscomputational chemistrycomputational pipelinescomputerized toolscytokinedesigndrug developmentefficacy testinggastrointestinal symptominhibitor/antagonistintestinal epitheliummedical schoolsmolecular dynamicsmolecular shapenovelnovel therapeuticsorgan on a chippandemic diseasepre-clinicalreceptorrecruitresponsetoolvalidation studies
项目摘要
PROJECT SUMMARY
This COMPETITIVE REVISION application is being submitted to expand the scope of our ongoing NIH
grant UH3HL141797 in order to leverage our human organ-on-a-chip (Organ Chip) microfluidic culture devices
for the rapid development and assessment of potential therapeutic agents for COVID-19. Our ongoing UH3
grant supports the development of human Lung Chips as in vitro preclinical tools for rapid discovery of new
therapeutics for viral pandemics caused by influenza. In recent studies, we showed that highly differentiated
human cells in our Lung Chips, as well as human intestinal cells within Intestine Chips we developed, express
high levels of ACE2 and TMPRSS2 that mediate SARS-CoV-2 virus (CoV2) infection. We also were able to
infect these Organ Chips with CoV2 spike protein-expressing viral pseudoparticles (CoV2pp) that closely mimic
the effects of native CoV2 virus when tested against multiple FDA approved drugs in cell-based assays.
Human Lung Chips were also shown to be more stringent models for assessing potential COVID19 inhibitory
activity as only a subset of these drugs significantly inhibited entry of the CoV2pp when administered under
flow on-chip at their maximum concentration (Cmax) in human blood reported in clinical studies. Here, we
propose to use human Intestine and Lung Chips in combination with computational discovery and synthetic
chemistry approaches to develop broad-spectrum coronavirus therapeutics that would both help infected
COVID19 patients now, and allow us to be prepared to prevent infections by related pandemic viruses that
emerge in the future. In preliminary studies, multiple novel compounds designed with our computational tools
exhibited significant inhibitory activities when tested against both CoV2pp and native CoV2 virus in cell based
assays. Thus, our Specific Aims include: 1) to use computational and synthetic chemistry approaches to
create new compounds that are predicted to inhibit infection by CoV2 virus and related coronaviruses, 2) to
prioritize active molecules by analyzing their structure-activity relationships in cell-based assays infected with
native CoV2 and related coronaviruses, 3) to identify lead compounds and effective doses based on inhibition
of infection and host inflammatory responses in human Organ Chips using native coronaviruses, and 4) to
carry out pharmacokinetic studies in mice coupled with iterative chemical synthesis and testing in cell-based
assays to optimize the pharmaceutical properties and safety of the lead compounds, while retaining efficacy.
Through this effort, we will identify new compounds that demonstrate broad spectrum inhibiting activities
against CoV2 as well as related coronaviruses, and generate pharmacokinetic data necessary to move these
drugs into animal validation studies and, eventually, human clinical trials. This work will also further establish
the value of human Organ Chips as preclinical tools for accelerating drug development.
项目摘要
这一竞争性修订申请正在提交,以扩大我们正在进行的NIH的范围,
授权UH 3 HL 141797,以利用我们的人体器官芯片(器官芯片)微流控培养装置
用于快速开发和评估COVID-19的潜在治疗药物。我们正在进行的UH 3
赠款支持开发人肺芯片作为体外临床前工具,用于快速发现新的
用于治疗由流感引起的病毒大流行。在最近的研究中,我们发现高分化的
我们的肺芯片中的人类细胞,以及我们开发的肠芯片中的人类肠细胞,
高水平的ACE 2和TMPRSS 2介导SARS-CoV-2病毒(CoV 2)感染。我们还能够
用表达CoV 2刺突蛋白的病毒假颗粒(CoV 2 pp)感染这些器官芯片,
天然CoV 2病毒在基于细胞的试验中针对多种FDA批准的药物进行测试时的作用。
人肺芯片也被证明是用于评估潜在COVID 19抑制的更严格的模型。
活性,因为这些药物中只有一个子集在给药时显著抑制CoV 2 pp的进入。
在临床研究中报告的人血液中的最大浓度(Cmax)下的芯片上流动。这里我们
我建议使用人类肠道和肺芯片结合计算发现和合成
化学方法来开发广谱冠状病毒疗法,
COVID 19患者现在,并允许我们做好准备,以防止感染相关的大流行病毒,
出现在未来。在初步研究中,使用我们的计算工具设计了多种新型化合物,
当在基于细胞的细胞培养中针对CoV 2 pp和天然CoV 2病毒测试时,
分析。因此,我们的具体目标包括:1)使用计算和合成化学方法,
创造新的化合物,预计可抑制CoV 2病毒和相关冠状病毒的感染,2)
通过在基于细胞的检测中分析活性分子的结构-活性关系,
天然CoV 2和相关冠状病毒,3)基于抑制作用确定先导化合物和有效剂量
使用天然冠状病毒的人器官芯片中的感染和宿主炎症反应,以及4)
在小鼠中进行药代动力学研究,结合迭代化学合成和基于细胞的测试,
分析以优化先导化合物的药物特性和安全性,同时保持功效。
通过这项工作,我们将确定新的化合物,表现出广谱抑制活性
针对CoV 2以及相关冠状病毒,并生成必要的药代动力学数据,
药物进入动物验证研究,最终进入人体临床试验。这项工作还将进一步建立
人体器官芯片作为加速药物开发的临床前工具的价值。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONALD E INGBER其他文献
DONALD E INGBER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONALD E INGBER', 18)}}的其他基金
Lung-on-a-Chip Disease Models for Efficacy Testing
用于功效测试的芯片肺疾病模型
- 批准号:
10228594 - 财政年份:2017
- 资助金额:
$ 92.84万 - 项目类别:
Lung-on-a-Chip Disease Models for Efficacy Testing
用于功效测试的芯片肺疾病模型
- 批准号:
9789494 - 财政年份:2017
- 资助金额:
$ 92.84万 - 项目类别:
Mechanotransduction analysis in a microengineered lung-on-a-chip
微工程肺芯片中的力传导分析
- 批准号:
8862797 - 财政年份:2015
- 资助金额:
$ 92.84万 - 项目类别:
Biomimetic Inductive Scaffolds for Tooth Organ Engineering
用于牙齿器官工程的仿生感应支架
- 批准号:
8855266 - 财政年份:2014
- 资助金额:
$ 92.84万 - 项目类别:
Heart-Lung Micromachine for Safety and Efficacy Testing
用于安全性和有效性测试的心肺微型机器
- 批准号:
8149980 - 财政年份:2010
- 资助金额:
$ 92.84万 - 项目类别:
Heart-Lung Micromachine for Safety and Efficacy Testing
用于安全性和有效性测试的心肺微型机器
- 批准号:
8322783 - 财政年份:2010
- 资助金额:
$ 92.84万 - 项目类别:
Heart-Lung Micromachine for Safety and Efficacy Testing
用于安全性和有效性测试的心肺微型机器
- 批准号:
8068443 - 财政年份:2010
- 资助金额:
$ 92.84万 - 项目类别:
Micromechanical Determinants of Organ Design and Engineering (SysCODE 6 of 10)
器官设计与工程的微机械决定因素(SysCODE 6 of 10)
- 批准号:
7466559 - 财政年份:2007
- 资助金额:
$ 92.84万 - 项目类别:
Extracellular Matrix as a Solid-State Regulator During Angiogenesis
细胞外基质作为血管生成过程中的固态调节剂
- 批准号:
7313775 - 财政年份:2007
- 资助金额:
$ 92.84万 - 项目类别:
Micromechanical Determinants of Organ Design and Engineering (SysCODE 6 of 10)
器官设计与工程的微机械决定因素(SysCODE 6 of 10)
- 批准号:
7502023 - 财政年份:2007
- 资助金额:
$ 92.84万 - 项目类别:
相似海外基金
REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
- 批准号:
2349771 - 财政年份:2024
- 资助金额:
$ 92.84万 - 项目类别:
Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 92.84万 - 项目类别:
Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
- 批准号:
23H00232 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
- 批准号:
23H01489 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
- 批准号:
2216835 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
- 批准号:
23H01882 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
- 批准号:
EP/X018385/1 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
- 批准号:
10635210 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
- 批准号:
2320636 - 财政年份:2023
- 资助金额:
$ 92.84万 - 项目类别:
Standard Grant














{{item.name}}会员




