Extracellular Matrix as a Solid-State Regulator During Angiogenesis
细胞外基质作为血管生成过程中的固态调节剂
基本信息
- 批准号:7313775
- 负责人:
- 金额:$ 26.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-01 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdhesivesApoptosisAreaBiomechanicsBlood VesselsBlood capillariesCalciumCapillary Endothelial CellCell ShapeCell surfaceCellsChemicalsCouplingCuesCytoskeletal ModelingDevelopmentECM receptorEndothelial CellsEquilibriumExhibitsExtracellular MatrixFocal AdhesionsGene ExpressionGoalsGrantGrowthIn VitroIndividualIntegrinsIon ChannelLeadLinkLocationMalignant NeoplasmsMechanicsModelingMolecularMolecular TargetMonomeric GTP-Binding ProteinsPositioning AttributeProcessProteinsRoleSignal TransductionSignaling MoleculeSolidStressTFII Transcription FactorsTherapeutic InterventionTractionTumor AngiogenesisVariantVascular Endothelial Growth Factor ReceptorVascular Endothelial Growth Factor Receptor-2Vascular Endothelial Growth FactorsWorkangiogenesisbasecapillarycell behaviorcell growthcell motilityclinically relevantdirectional cellin vivoinhibitor/antagonistmigrationmillisecondpaxillinreceptorresearch studyresponserhosolid statetumor
项目摘要
The general goal of this renewal proposal is to understand the biomechanical mechanism by which
extracellular matrix (ECM) regulates angiogenesis during tumor development, with a specific focus on how
physical interactions between capillary endothelial (CE) cells and their ECM adhesions control directional cell
motility. During the last grant period, we showed that mechanical changes at the cell-ECM interface govern
the direction in which cells move because local variations of physical force distributions dictate where cells
will form focal adhesions (FAs) and extend new motile processes when stimulated with soluble motility
factors. Analysis of this motility steering mechanism and the mechanism of FA repositioning revealed a
central role for transfer of mechanical forces across transmembrane integrin receptors which elicit signaling
responses that, in turn, activate additional p1 integrin receptors. Other signaling molecules, including the
small GTPases, Rho and Rac, also contribute to the mechanism by which ECM influences FA location, and
cells that lack the FA protein paxillin fail to exhibit spatial coupling between FA formation and lamellipodia
extension. In separate studies, we discovered that an upstream regulator of Rho, p190RhoGAP, may link
cytoskeletal signaling to cell motility and angiogenesis by another mechanism: this Rho inhibitor regulates
the activity of the transcription factor TFII-I and thereby controls expression of the vascular endothelial
growth factor (VEGF) receptor VEGFR2. Thus, the specific aims include: 1) To explore how stress-
dependent activation of (31 integrin and Rho alter focal adhesion position, 2) To determine how focal
adhesions govern lamellipodia positioning and directional cell migration, and 3) To analyze how cytoskeletal
signaling through p190RhoGAP influences VEGFR2 gene expression. These studies will include in vitro
mechanistic experiments as well as in vivo studies in a tumor angiogenesis model to determine the potential
clinical relevance of our findings.
Understanding the molecular basis of this mechanical signaling response that controls direction migration
of capillary blood vessel cells could lead to identification of new molecular targets for therapeutic intervention
in virtually all solid cancers that require continuous angiogenesis for their own growth and expansion.
这项更新建议的总体目标是了解生物力学机制,
细胞外基质(ECM)在肿瘤发展过程中调节血管生成,特别关注如何
毛细血管内皮(CE)细胞与其ECM粘附之间的物理相互作用控制定向细胞
能动性在上一个资助期间,我们发现细胞-ECM界面的机械变化决定了细胞的生长。
细胞移动的方向,因为物理力分布的局部变化决定了细胞的位置,
当用可溶性运动刺激时,将形成局灶性粘连(FA)并延长新的运动过程
因素对这种动力转向机制和FA重新定位机制的分析揭示了一种
跨膜整合素受体机械力传递的中心作用
这些反应反过来激活另外的β 1整联蛋白受体。其他信号分子,包括
小GTP酶Rho和Rac也有助于ECM影响FA定位的机制,
缺乏FA蛋白桩蛋白的细胞不能表现出FA形成和板状伪足之间的空间耦合
扩展名.在单独的研究中,我们发现Rho的上游调节因子p190 RhoGAP可能与Rho的表达相关。
细胞骨架信号传导通过另一种机制影响细胞运动和血管生成:这种Rho抑制剂调节
转录因子TFII-I的活性,从而控制血管内皮细胞的表达,
生长因子(VEGF)受体VEGFR 2。因此,本研究的具体目标包括:1)探讨压力-
β 1整合素和Rho的依赖性活化改变粘着斑位置,2)为了确定粘着斑如何与细胞粘附,
粘附控制板状伪足定位和定向细胞迁移,和3)为了分析细胞骨架如何
通过p190 RhoGAP的信号传导影响VEGFR 2基因表达。这些研究将包括体外
机制实验以及在肿瘤血管生成模型中的体内研究,以确定
我们的发现的临床意义。
了解这种控制方向迁移的机械信号反应的分子基础
毛细血管细胞的研究可能导致识别新的分子靶点进行治疗干预
在几乎所有需要持续血管生成来进行自身生长和扩张的实体癌中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DONALD E INGBER其他文献
DONALD E INGBER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DONALD E INGBER', 18)}}的其他基金
Lung-on-a-Chip Disease Models for Efficacy Testing
用于功效测试的芯片肺疾病模型
- 批准号:
10228594 - 财政年份:2017
- 资助金额:
$ 26.52万 - 项目类别:
Lung-on-a-Chip Disease Models for Efficacy Testing
用于功效测试的芯片肺疾病模型
- 批准号:
9789494 - 财政年份:2017
- 资助金额:
$ 26.52万 - 项目类别:
Lung-on-a-Chip Disease Models for Efficacy Testing (COVID-19 Competitive Revision)
用于功效测试的芯片肺疾病模型(COVID-19 竞争性修订版)
- 批准号:
10167350 - 财政年份:2017
- 资助金额:
$ 26.52万 - 项目类别:
Mechanotransduction analysis in a microengineered lung-on-a-chip
微工程肺芯片中的力传导分析
- 批准号:
8862797 - 财政年份:2015
- 资助金额:
$ 26.52万 - 项目类别:
Biomimetic Inductive Scaffolds for Tooth Organ Engineering
用于牙齿器官工程的仿生感应支架
- 批准号:
8855266 - 财政年份:2014
- 资助金额:
$ 26.52万 - 项目类别:
Heart-Lung Micromachine for Safety and Efficacy Testing
用于安全性和有效性测试的心肺微型机器
- 批准号:
8149980 - 财政年份:2010
- 资助金额:
$ 26.52万 - 项目类别:
Heart-Lung Micromachine for Safety and Efficacy Testing
用于安全性和有效性测试的心肺微型机器
- 批准号:
8322783 - 财政年份:2010
- 资助金额:
$ 26.52万 - 项目类别:
Heart-Lung Micromachine for Safety and Efficacy Testing
用于安全性和有效性测试的心肺微型机器
- 批准号:
8068443 - 财政年份:2010
- 资助金额:
$ 26.52万 - 项目类别:
Micromechanical Determinants of Organ Design and Engineering (SysCODE 6 of 10)
器官设计与工程的微机械决定因素(SysCODE 6 of 10)
- 批准号:
7466559 - 财政年份:2007
- 资助金额:
$ 26.52万 - 项目类别:
Micromechanical Determinants of Organ Design and Engineering (SysCODE 6 of 10)
器官设计与工程的微机械决定因素(SysCODE 6 of 10)
- 批准号:
7502023 - 财政年份:2007
- 资助金额:
$ 26.52万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 26.52万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 26.52万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 26.52万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 26.52万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 26.52万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 26.52万 - 项目类别:
Investment Accelerator














{{item.name}}会员




