Real-time Aberration Sensor for Large-Scale Microscopy Deep in the Mouse and Adult Zebrafish Brain
用于小鼠和成年斑马鱼大脑深处的大规模显微镜检查的实时像差传感器
基本信息
- 批准号:10166305
- 负责人:
- 金额:$ 198.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdultAlgorithmsBiologicalBiological ProcessBrainBrain DiseasesBrain imagingBrain regionBudgetsCalibrationCellsCerebellumConsumptionFinancial compensationFluorescenceGoalsHybridsImageImaging TechniquesImaging technologyIndividualLabelLasersMapsMethodsMicroscopeMicroscopyModalityMorphologic artifactsMotionMusNeuronsNeurosciencesNeurosciences ResearchNoiseOptical Coherence TomographyOpticsPenetrationPhasePhotobleachingPhotonsPhototoxicityPhysiologic pulsePopulationPositioning AttributeProceduresPupilResearchResolutionSamplingShapesSignal TransductionSourceSpecificitySpeedStructureSystemTechniquesTechnologyTimeTissuesTrainingZebrafishadaptive opticsawakebasebiological systemsbrain tissuedata acquisitiondentate gyrusdigitalimaging approachimaging studyimaging systemin vivointerestmicroscopic imagingmouse modelmultimodalitymultiphoton microscopynoveloptical imagingparallel computerparallel processingprogramsrelating to nervous systemsensorspatiotemporalsuperior colliculus Corpora quadrigeminathree photon microscopytwo photon microscopy
项目摘要
ABSTRACT
Optical imaging holds tremendous promise in our endeavor to understand brain functions. The major challenges
for optical brain imaging are depth and speed. Due to optical aberrations and tissue scattering, the penetration
depth and imaging speed of optical microscopy in the brains (e.g., mouse) is limited. The constraints in depth
and speed make large-scale, deep imaging of mouse brain activity out of reach of current imaging techniques.
Hardware adaptive optics (AO) has proven to be valuable for in vivo brain imaging with two-photon microscopy
(2PM), and will have even larger impact for deep brain 3-photon microscopy (3PM); however, existing AO
techniques require iterative optimization using multiphoton excited fluorescence signal. While adequate for
imaging relatively shallow regions of the brain (< 1 mm deep), iterative optimization is impractical with ultra-deep
imaging since the fluorescence signal deceases exponentially with imaging depth. The required integration time
to obtain the necessary signal-to-noise ratio for iterative optimization becomes prohibitively long. In this program,
we will leverage the advantages provided by computational adaptive optics (CAO) in optical coherence
microscopy (OCM), specifically the strong OCT signal (from linear backscattering), and parallel computing on a
high-end graphics processing unit (GPU), to provide orders of magnitude speed-up for the sensing of
sample-induced aberrations throughout a volume of interest. A long-wavelength OCM system and CAO
aberration sensor will be utilized to drive a hardware AO system to correct depth-dependent aberrations, push
3PM imaging depth beyond currently demonstrated limits, and increase imaging speed by at least one order of
magnitude. Additionally, by combining with recently developed adaptive excitation laser technology, we will
achieve approximately 300-fold increase in photon budget, which will enable truly unprecedented 3PM imaging
speed and depth. Successful completion of this program will enable rapid aberration sensing at the depth range
of 1 to 2 mm, and will open the exciting new opportunity of recording the neural activity of the dentate gyrus of
adult mice through the intact brain. With its high-speed and deep-tissue aberration sensing capability, and zero
additional photobleaching and phototoxicity, our novel method for real-time aberration sensing and correction is
ideally positioned to transform our ability for large-scale, deep recording of mouse and adult zebrafish brain
activity. This imaging approach will significantly extend the information available for neuroscience studies on
individual cell-cell as well as circuit interactions that underlie normal and diseased brain function. The technology
developed by this proposal will be applicable to imaging in other biological systems where large-scale, deep
imaging at high spatiotemporal resolution is needed.
摘要
光学成像在我们理解大脑功能的奋进中有着巨大的希望。的主要挑战
最重要的是深度和速度由于光学像差和组织散射,
脑中光学显微镜的深度和成像速度(例如,鼠标)是有限的。深度限制
和速度使得对小鼠大脑活动的大规模深度成像超出了当前成像技术的范围。
硬件自适应光学(AO)已被证明是有价值的在体脑成像与双光子显微镜
(2PM),并将对深部脑3光子显微镜(3 PM)产生更大的影响;然而,现有的AO
这些技术需要使用多光子激发的荧光信号进行迭代优化。虽然足够用于
对于脑的相对浅的区域(< 1 mm深)成像,迭代优化对于超深成像是不切实际的。
因为荧光信号随成像深度呈指数衰减,所需的集成时间
获得迭代优化所需的信噪比的时间变得过长。在这个节目中,
我们将充分利用计算自适应光学(CAO)在光学相干方面的优势
光学显微镜(OCM),特别是强OCT信号(来自线性后向散射),以及在
高端图形处理单元(GPU),为传感提供数量级的加速,
在整个感兴趣体积中的样品诱导的畸变。长波OCM系统和CAO
像差传感器将用于驱动硬件AO系统,以校正深度相关像差,
3 PM成像深度超过目前证明的限制,并将成像速度提高至少一个数量级
大小此外,通过结合最近开发的自适应激发激光技术,我们将
光子预算增加约300倍,这将实现真正前所未有的3 PM成像
速度和深度。成功完成该计划将使在深度范围内的快速像差感测成为可能
1至2毫米,并将打开令人兴奋的新的机会,记录齿状回的神经活动,
成年老鼠的完整大脑凭借其高速和深层组织像差传感能力,
附加的光漂白和光毒性,我们的实时像差传感和校正的新方法,
理想的定位是改变我们对小鼠和成年斑马鱼大脑进行大规模深度记录的能力
活动这种成像方法将大大扩展神经科学研究的信息,
单个细胞-细胞以及构成正常和患病脑功能基础的回路相互作用。技术
该提案所开发的成像技术将适用于其他生物系统中的大规模,深
需要高时空分辨率的成像。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simultaneous multimodal three-photon and optical coherence microscopy of the mouse brain in the 1700 nm optical window in vivo.
在体内 1700 nm 光学窗口中同时进行多模态三光子和光学相干显微镜观察小鼠大脑。
- DOI:10.1101/2023.09.11.557176
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yang,Xusan;Liu,Siyang;Xia,Fei;Wu,Meiqi;Adie,Steven;Xu,Chris
- 通讯作者:Xu,Chris
Investigation of multiple scattering in space and spatial-frequency domains: with application to the analysis of aberration-diverse optical coherence tomography
空间和空间频率域中多重散射的研究:应用于像差多样化光学相干断层扫描分析
- DOI:10.1364/boe.439395
- 发表时间:2021
- 期刊:
- 影响因子:3.4
- 作者:Wu, Meiqi;Liu, Siyang;Leartprapun, Nichaluk;Adie, Steven
- 通讯作者:Adie, Steven
Resolution-enhanced OCT and expanded framework of information capacity and resolution in coherent imaging.
- DOI:10.1038/s41598-021-99889-3
- 发表时间:2021-10-15
- 期刊:
- 影响因子:4.6
- 作者:Leartprapun N;Adie SG
- 通讯作者:Adie SG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Graham Adie其他文献
Steven Graham Adie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Graham Adie', 18)}}的其他基金
Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
- 批准号:
10446063 - 财政年份:2022
- 资助金额:
$ 198.23万 - 项目类别:
Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
- 批准号:
10634673 - 财政年份:2022
- 资助金额:
$ 198.23万 - 项目类别:
Ultrahigh-Resolution Quantitative Optical Coherence Elastography of the Tumor Microenvironment In Vivo
体内肿瘤微环境的超高分辨率定量光学相干弹性成像
- 批准号:
10225877 - 财政年份:2021
- 资助金额:
$ 198.23万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10165754 - 财政年份:2019
- 资助金额:
$ 198.23万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10399569 - 财政年份:2019
- 资助金额:
$ 198.23万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10389834 - 财政年份:2019
- 资助金额:
$ 198.23万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 198.23万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 198.23万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 198.23万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 198.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 198.23万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 198.23万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 198.23万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 198.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 198.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 198.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




