Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
基本信息
- 批准号:10399569
- 负责人:
- 金额:$ 39.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdipose tissueAdoptionAlgorithmsAtomic Force MicroscopyBehaviorBiological MarkersBiophysicsBreast Epithelial CellsCancerousCell Culture TechniquesCell DensityCellsCollaborationsCollagenConfocal MicroscopyDataDiagnosticEnvironmentExtracellular MatrixFluorescenceFluorescence MicroscopyFutureHydrogelsImageIn VitroIndividualInvestigationLeadMalignant NeoplasmsMeasurementMechanicsMethodsMicroscopyNeoplasm MetastasisOncologyOpticsPhysicsPhysiologicalPlayPopulationProceduresResearchResearch PersonnelResolutionRoleSamplingSepharoseSpecificityStressStromal CellsSurfaceSymptomsSystemTechniquesTestingThree-Dimensional ImagingTimeTractionVariantaustinbasebiophysical analysiscancer cellcarcinogenesiscell behaviorcell motilitycell typecellular imagingdensitydesignelastographyexperimental studyfluorescence imagingimaging capabilitiesimaging modalityimaging platformimaging studyinnovationmechanical behaviormechanical propertiesmigrationmillimeternovelphotonicsreconstructiontargeted treatmentthree dimensional cell culturetooltumortumor metabolismtumor progression
项目摘要
Project Summary
The understanding of cancer has evolved rapidly over the last decade, particularly with discoveries regarding
the role of physical factors, such as extracellular matrix (ECM) stiffness and cellular forces, in carcinogenesis.
This research has shown that altered ECM stiffness is not just a symptom of tumors, but is now known to trigger
the actual onset of and progression of malignancy. Another key finding is that cellular traction stresses increase
with increasing metastatic potential, suggesting that cell traction forces could be a biomarker for the likelihood of
metastasis. Additionally, it has been found that (2D) collective behavior of cell populations can be significantly
different from that of isolated cancer cells, and that cell migratory behavior in 3D matrices is significantly different
migration on 2D surfaces. Although this has motivated the adoption of 3D microenvironments in cancer
mechanobiology research, current imaging methods to quantify ECM mechanical properties and local cellular
forces only provide 2D imaging, or when they do support 3D imaging, they do not provide long-range volumetric
measurements of collective mechanical behavior with cellular resolution. The central objective of this proposal
is to develop quantitative reconstruction capabilities for OCT-based techniques recently developed by the PI's
group for volumetric imaging of cell traction forces and ECM mechanical properties. These new quantitative
capabilities will be integrated with a fluorescence confocal microscopy module, to demonstrate a novel imaging
platform with unprecedented capabilities for time-lapse imaging studies of biophysical cell-ECM interactions in
3D environments. Aim 1 will develop the capabilities for quantitative 3D reconstruction of ECM mechanical
properties and validate it against rheometry and atomic force microscopy (AFM). Aim 2 will demonstrate our
OCT-based imaging of 3D cell traction forces using low-density cell cultures, integrating cellular resolution
imaging of ECM mechanical properties over millimeter-scale volumes. The demonstration of these novel,
integrated imaging capabilities in low-density cell cultures will be followed by a demonstration in dense tumor
spheroid cell cultures, where we will compare traction forces and ECM remodeling at the main spheroid boundary
versus surrounding invasion strands. Aim 3 will add a confocal fluorescence imaging module to our OCT system,
and we will demonstrate that this imaging platform can perform time-lapse reconstruction of 3D cell traction
forces and cell-induced changes in ECM mechanical properties in a multiple-cell population migrating in 3D
collagen. This will enable the first direct comparison of the time-varying traction forces of different cell types
simultaneously migrating in 3D collagen. Our novel 3D imaging platform for systems mechanobiology research
could lead to a deeper understanding of potential biophysical (mechanical) hallmarks of cancer, that can be used
in the future to design and test new `mechano-therapies' that target/modulate the mechanical properties of the
ECM.
项目摘要
在过去的十年里,对癌症的理解迅速发展,特别是在以下方面的发现:
物理因素的作用,如细胞外基质(ECM)的硬度和细胞的力量,在致癌作用。
这项研究表明,ECM硬度的改变不仅仅是肿瘤的症状,
恶性肿瘤的实际发作和进展。另一个关键发现是细胞牵引应力增加
随着转移潜力的增加,这表明细胞牵引力可能是一种生物标志物,
转移此外,已经发现,细胞群体的(2D)集体行为可以显著地改变。
与分离的癌细胞不同,并且细胞在3D基质中的迁移行为显著不同
2D曲面上的迁移。尽管这促使了3D微环境在癌症中的采用,
机械生物学研究,目前的成像方法,以量化ECM的机械性能和局部细胞
部队仅提供2D成像,或者当它们支持3D成像时,它们不提供远程体积成像
用细胞分辨率测量集体力学行为。这项建议的中心目标是
是为PI最近开发的基于OCT的技术开发定量重建能力
用于细胞牵引力和ECM机械特性的体积成像的组。这些新的量化
能力将与荧光共聚焦显微镜模块集成,以展示一种新的成像技术。
该平台具有前所未有的能力,可用于生物物理细胞-ECM相互作用的延时成像研究,
3D环境。目标1将开发ECM机械的定量3D重建能力
性能和验证它对流变仪和原子力显微镜(AFM)。目标2将展示我们的
基于OCT的3D细胞牵引力成像,使用低密度细胞培养物,整合细胞分辨率
毫米级体积上ECM机械性能的成像。这些小说的示范,
在低密度细胞培养中的综合成像能力之后,将在致密肿瘤中进行演示。
球体细胞培养,我们将比较牵引力和ECM重塑在主要球体边界
与周围的入侵链进行对比Aim 3将在我们的OCT系统中添加共焦荧光成像模块,
我们将证明这个成像平台可以对3D细胞牵引进行延时重建,
在3D中迁移的多细胞群体中ECM机械特性的力和细胞诱导的变化
胶原这将使不同细胞类型的时变牵引力的第一次直接比较
同时在3D胶原蛋白中迁移。用于系统机械生物学研究的新型3D成像平台
可能导致对癌症的潜在生物物理(机械)特征的更深入理解,
在未来设计和测试新的“机械疗法”,目标/调节机械性能的
ECM。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Graham Adie其他文献
Steven Graham Adie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Graham Adie', 18)}}的其他基金
Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
- 批准号:
10446063 - 财政年份:2022
- 资助金额:
$ 39.8万 - 项目类别:
Overcoming the Multiple Scattering Limit in Optical Coherence Tomography
克服光学相干断层扫描中的多重散射限制
- 批准号:
10634673 - 财政年份:2022
- 资助金额:
$ 39.8万 - 项目类别:
Real-time Aberration Sensor for Large-Scale Microscopy Deep in the Mouse and Adult Zebrafish Brain
用于小鼠和成年斑马鱼大脑深处的大规模显微镜检查的实时像差传感器
- 批准号:
10166305 - 财政年份:2021
- 资助金额:
$ 39.8万 - 项目类别:
Ultrahigh-Resolution Quantitative Optical Coherence Elastography of the Tumor Microenvironment In Vivo
体内肿瘤微环境的超高分辨率定量光学相干弹性成像
- 批准号:
10225877 - 财政年份:2021
- 资助金额:
$ 39.8万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10165754 - 财政年份:2019
- 资助金额:
$ 39.8万 - 项目类别:
Volumetric time-lapse imaging of biophysical cell-extracellular matrix interactions for systems mechanobiology research
用于系统力学生物学研究的生物物理细胞-细胞外基质相互作用的体积延时成像
- 批准号:
10389834 - 财政年份:2019
- 资助金额:
$ 39.8万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.8万 - 项目类别:
Research Grant