Mechanisms of mitosis and size control in Xenopus
非洲爪蟾有丝分裂和大小控制的机制
基本信息
- 批准号:10166491
- 负责人:
- 金额:$ 85.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-12 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectArchitectureAreaAutomobile DrivingBiochemicalBiologicalBiological AssayBiologyBiophysical ProcessCell NucleusCell SizeCell divisionCell physiologyCellsCentromereChromosome CondensationChromosome SegregationChromosomesCiona intestinalisCollaborationsComputer ModelsConflict (Psychology)CytoplasmCytoskeletonDNADefectDevelopmentEmbryoEmbryonic DevelopmentEnsureEventEvolutionGene ExpressionGenomeGenomicsHybridsInterphaseKinetochoresLaboratoriesLeadLifeLinkMalignant NeoplasmsMeasuresMediatingMeiosisMicrofluidicsMicroscopyMicrotubulesMitosisMitoticMitotic ChromosomeMitotic spindleMolecularMorphologyOocytesOrganellesOrganismPhylogenetic AnalysisPhysiologyPloidiesProcessProteomicsRanaResearchResolutionRoleShapesStructureSurfaceSystemTechniquesTestingTimeUrochordataXenopusbasecell typechromosome missegregationdaughter celleggembryo cellhuman diseasein vivoinnovationinsightlaser tweezernovelnovel strategiesreproductivesegregationsensorsingle moleculesperm cellvirtualxenopus development
项目摘要
PROJECT SUMMARY
Mechanisms of Mitosis and Size Control in Xenopus
Research in my laboratory is focused on two major areas:
Cell division is arguably the most dramatic event in the life of a cell. Chromosomes condense, organelles
vesiculate, and the microtubule cytoskeleton rearranges into a bipolar spindle that attaches to chromosomes at
their kinetochores and segregates a complete genome to each daughter cell. Although the morphological
changes that occur during mitosis were first observed over a century ago, we still do not understand
how these dynamic events are orchestrated. Many factors have been identified that contribute to spindle
assembly and function, but the molecular and biophysical mechanisms and interactions that ensure mitotic
fidelity remain unclear. Our current projects address outstanding questions including 1) What are the molecular
underpinnings and functional consequences of different spindle architectures? Spindle size and organization
vary dramatically across cell types and organisms, and factors known to affect these parameters are altered in
many cancers, but how specific spindle features are established and their effects on chromosome segregation
and cell division are poorly understood. We will leverage morphometric and phylogenetic comparisons together
with biochemical and functional assays to investigate the dramatic changes in spindle architecture that occur
between oocyte meiosis and the mitotic divisions of early development in Xenopus and the sea squirt Ciona
intestinalis. We will elucidate the role of specific factors in this transition, and examine the consequences of
altering spindle architecture on embryo cell division. 2) What defects in cell division mechanisms underlie
speciation? We have observed chromosome mis-segregation in inviable hybrids generated by fertilizing Xenopus
tropicalis eggs with X. laevis sperm, and identified incompatibility between a subset of paternal centromeres and
maternal cytoplasm as one underlying cause. We will elucidate the molecular basis of inter-species conflicts that
impact cell division and contribute to reproductive isolation. 3) What is the molecular basis of mitotic chromosome
condensation? We have developed a novel approach using optical tweezers to measure the dynamics of single
DNA molecules in real-time in Xenopus egg extracts with high spatial and temporal precision and will use this
system to dissect the roles of key factors in driving mitotic chromosome assembly.
Absolute and relative size of biological entities varies widely, both within and among species at all levels of
organization above the atomic/molecular: the organism, the cells that make up the organism, and the cellular
components. How does scaling occur so that everything fits and functions properly? Correct scaling inside
cells is crucial for cell function, architecture, and division, but until recently the control systems that a
cell uses to regulate the size of its internal structures were virtually unknown. We have established assays
to elucidate mechanisms of intracellular scaling between different-sized frog species and during the rapid,
reductive cell divisions of early embryogenesis. We are further developing these systems to ask: 1) What scales
mitotic chromosome size to cell size? We are testing the hypothesis that a surface area to volume sensor acting
on the interphase nucleus and the mitotic spindle also coordinately adjusts mitotic chromosomes to cell size
during Xenopus development. 2) What are the connections between genome size, cell size, physiology, and
development? Cell size correlates strongly with genome size across evolution, but underlying mechanisms are
unknown. We will utilize different ploidy frog embryos to address how altering genome size affects gene
expression, and a variety of species including the dodecaploid frog Xenopus longipes to investigate relationships
between genome size, cell division mechanisms, development, and physiology.
The means to address these fundamental cell biological questions is enabled by powerful experimental systems
based on cytoplasmic extracts and functional in vivo assays in vertebrate (Xenopus) embryos. We have
established productive collaborations and apply diverse techniques including high-resolution microscopy, single
molecule assays, genomics, proteomics, microfluidics and computational modeling to fill important conceptual
gaps in an innovative, rigorous, and interdisciplinary manner. Our research will continue to provide novel insight
into cell division and size control, processes essential for viability and development, and defective in human
diseases including cancer. Although introduced as distinct topics, cell division and size control are intimately
linked. We are increasingly focused on how cross-species comparisons can elucidate molecular mechanisms
underlying cell division and size control, as well as how biological constraints related to these processes have
shaped evolution. Together, these projects uniquely advance our understanding of long-standing questions in
biology.
项目摘要
非洲爪蟾有丝分裂和大小控制的机制
我实验室的研究主要集中在两个方面:
细胞分裂可以说是细胞生命中最戏剧性的事件。染色体浓缩,细胞器
小泡状,微管细胞骨架重排成双极纺锤体,附着在染色体上,
它们的着丝粒,并将完整的基因组分离到每个子细胞。虽然形态学
有丝分裂过程中发生的变化是在世纪前首次观察到的,我们仍然不了解
这些动态事件是如何协调的许多因素已被确定,有助于纺锤体
组装和功能,但分子和生物物理机制和相互作用,确保有丝分裂
忠诚度仍然不清楚。我们目前的项目解决悬而未决的问题,包括1)什么是分子
不同纺锤体结构的基础和功能后果?主轴尺寸和结构
在不同的细胞类型和生物体中有很大的不同,已知影响这些参数的因素在不同的细胞类型和生物体中也会发生变化。
许多癌症,但如何建立特定的纺锤体特征及其对染色体分离的影响
和细胞分裂都知之甚少。我们将利用形态和系统发育比较在一起
通过生物化学和功能测定来研究在细胞周期中发生的
非洲爪蟾和海鞘早期发育的卵母细胞减数分裂和有丝分裂之间的关系
好吧我们将阐明在这一转变中的具体因素的作用,并检查
改变胚胎细胞分裂的纺锤体结构。2)细胞分裂机制的缺陷是什么
物种形成我们在非洲爪蟾产生的不能存活的杂种中观察到染色体的错误分离
tropicalis eggs与X. laevis精子,并确定了一个子集的父亲着丝粒和
母亲的细胞质是一个潜在的原因。我们将阐明物种间冲突的分子基础,
影响细胞分裂并导致生殖隔离。3)有丝分裂染色体的分子基础是什么
冷凝?我们开发了一种新的方法,使用光镊来测量单
DNA分子在实时爪蟾卵提取物具有很高的空间和时间精度,并将使用此
系统来剖析有丝分裂染色体组装中关键因素的作用。
生物实体的绝对和相对大小差异很大,无论是在物种内部还是在物种之间的所有层次上,
原子/分子以上的组织:生物体,构成生物体的细胞,以及细胞
件.如何进行缩放以使一切都适合并正常工作?内部正确缩放
细胞对细胞功能、结构和分裂至关重要,但直到最近,
细胞用来调节其内部结构的大小几乎是未知的。我们已经建立了
为了阐明不同大小的青蛙物种之间的细胞内缩放机制,
早期胚胎发生的细胞减数分裂。我们正在进一步开发这些系统,以询问:1)什么规模
有丝分裂染色体大小与细胞大小的比值我们正在测试一个假设,即表面积体积传感器作用
有丝分裂纺锤体也协调地调节有丝分裂染色体以适应细胞大小
在非洲爪蟾的发育过程中。2)基因组大小、细胞大小、生理学和
发展?细胞大小与整个进化过程中的基因组大小密切相关,但潜在的机制是
未知我们将利用不同倍性的青蛙胚胎来解决改变基因组大小如何影响基因表达的问题。
表达,以及包括十二倍体青蛙爪蟾在内的各种物种,以调查关系
基因组大小、细胞分裂机制、发育和生理学之间的关系。
解决这些基本细胞生物学问题的方法是由强大的实验系统实现的
基于脊椎动物(非洲爪蟾)胚胎的细胞质提取物和体内功能测定。我们有
建立了富有成效的合作,并应用各种技术,包括高分辨率显微镜,单
分子测定、基因组学、蛋白质组学、微流体和计算建模,以填补重要的概念
以创新、严谨和跨学科的方式填补空白。我们的研究将继续提供新的见解
进入细胞分裂和大小控制,对生存力和发育至关重要的过程,以及在人类中的缺陷。
包括癌症在内的疾病。虽然作为不同的主题介绍,细胞分裂和大小控制是密切相关的。
有联系我们越来越关注跨物种比较如何阐明分子机制
潜在的细胞分裂和大小控制,以及与这些过程相关的生物学约束如何
塑造进化总之,这些项目独特地推进了我们对长期存在的问题的理解,
生物学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rebecca W Heald其他文献
Rebecca W Heald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rebecca W Heald', 18)}}的其他基金
Mechanisms of mitosis and size control in Xenopus
非洲爪蟾有丝分裂和大小控制的机制
- 批准号:
10589896 - 财政年份:2016
- 资助金额:
$ 85.85万 - 项目类别:
Mechanisms of mitosis and size control in Xenopus
非洲爪蟾有丝分裂和大小控制的机制
- 批准号:
10378687 - 财政年份:2016
- 资助金额:
$ 85.85万 - 项目类别:
Mechanisms of mitosis and size control in Xenopus
非洲爪蟾有丝分裂和大小控制的机制
- 批准号:
9896841 - 财政年份:2016
- 资助金额:
$ 85.85万 - 项目类别:
Mechanisms of mitosis and size control in Xenopus
非洲爪蟾有丝分裂和大小控制的机制
- 批准号:
9071807 - 财政年份:2016
- 资助金额:
$ 85.85万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 85.85万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 85.85万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 85.85万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 85.85万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 85.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 85.85万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 85.85万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 85.85万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 85.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 85.85万 - 项目类别:
Studentship














{{item.name}}会员




