Small GTPase signaling in dendrites and spines

树突和棘中的小 GTP 酶信号传导

基本信息

  • 批准号:
    10173123
  • 负责人:
  • 金额:
    $ 78.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2005
  • 资助国家:
    美国
  • 起止时间:
    2005-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

ABSTRACT Dendritic and spine plasticity plays key roles in brain development, function, behavior, and disease. Indeed, spine and dendrite pathology is a common feature of many neuropsychiatric disorders (NPDs), including autism spectrum disorder (ASD), schizophrenia (SZ), and bipolar disorder (BPD). Rho-like small GTPases, including Rac1, are a family of regulatory proteins with central roles in dendrite and spine plasticity. Their extensive implication in NPDs suggests that these pathways can serve as therapeutic targets in NPDs. The activity of small GTPases is enhanced by guanine-nucleotide-exchange factors (GEFs), among which the Rac1- GEF kalirin is highly enriched in spines, and is perhaps the best-characterized GEF in the brain. Kalirin is a central regulator of dendrite arborization, spine plasticity, glutamatergic transmission, neuronal connectivity, and cognitive behavior. While small-molecule pharmacological modulators have been invaluable tools for studying the biological functions of kinases, receptors, or ion channels, no such tools exist for Rho-GEFs, including kalirin. Kalirin is an optimal drug target for several reasons: its expression is largely restricted to the CNS, it is highly enriched in spines, it is a signaling hub in a synaptic network including many NPD risk factors, its enzymatic activity can be modulated, and the 3D structure of its GEF domain has been determined. Here we outline a novel and innovative hit validation cascade that will allow us to develop small-molecule tools to investigate a previously unapproachable target relevant to NPDs. The brain-specific expression of kalirin and its highly compartmentalized subcellular localization at synapses suggests that regulation of Rac1 signaling, through pharmacological interventions targeting kalirin, may allow neuron- and synapse-specific effects. This is key to developing tools that produce cell type-specific and context-dependent Rac1 modulation. Using a combination of high-throughput screening (HTS) and in silico screening against the target proteins kalirin/Rac1, we produced a hit list of potential regulators of kalirin activity suitable for follow-up analysis in well-characterized and optimized assays. We hypothesize that small-molecule compounds isolated in HTS and in silico screens modulate kalirin's GEF and biological activity in rodent and human iPSC-derived neuron models, and reverse neuroarchitectural abnormalities in models of NPDs. We will test this hypothesis in the following aims: 1) Hit validation and in vitro characterization, selection, and prioritization. 2) Prioritization of mouse and human neuronal model systems for testing validated hits. 3) Characterization of validated hit compounds in mouse and iPSC models.
摘要 树突状细胞和脊椎的可塑性在大脑发育、功能、行为和疾病中起着关键作用。的确, 棘突和树突病理是许多神经精神障碍(NPD)的共同特征,包括 自闭症谱系障碍(ASD)、精神分裂症(SZ)和双相情感障碍(BPD)。Rho样的小GTP酶, 包括rac1在内,是一个调节蛋白家族,在树突和棘突的可塑性中起核心作用。他们的 对NPD的广泛研究表明,这些通路可以作为NPD的治疗靶点。这个 鸟嘌呤核苷酸交换因子(GEF)可增强小分子GTP酶的活性,其中,Rac1-GTP酶活性最高。 全球环境基金卡利林的脊椎高度丰富,可能是大脑中最具特征的全球环境基金。加里林是一名 树突分枝、脊髓可塑性、谷氨酸能传递、神经元连接的中枢调节因子, 和认知行为。虽然小分子药物调节剂一直是治疗 在研究激酶、受体或离子通道的生物学功能时,Rho-GEF还没有这样的工具, 包括加里林。Kalirin是一个理想的药物靶点有几个原因:它的表达在很大程度上限于 中枢神经系统,它的脊椎高度丰富,是突触网络中的信号枢纽,包括许多NPD风险因子, 它的酶活性是可以调节的,并确定了它的环境蛋白结构域的三维结构。在这里我们 概述一个新颖和创新的HIT验证级联,它将使我们能够开发小分子工具来 调查以前无法接近的与NPD相关的目标。Kalirin和Kalirin的脑特异性表达 它在突触的高度划分的亚细胞定位表明,对rac1信号的调节, 通过针对Kalirin的药物干预,可能允许神经元和突触特异的效应。这 是开发产生特定细胞类型和上下文相关的rac1调制的工具的关键。使用 针对靶蛋白的高通量筛选(HTS)和电子筛选相结合 Kalirin/rac1,我们制作了一份适用于后续分析的Kalirin活性潜在调节因子的命中列表 具有良好特性和优化的分析方法。我们假设在高温超导中分离出的小分子化合物 在电子屏幕上调节Kalirin在啮齿动物和人IPSC来源神经元中的全环和生物活性 模型,并逆转NPD模型的神经结构异常。我们将在 以下目标:1)HIT验证和体外表征、选择和优先排序。2)确定优先顺序 用于测试有效命中的小鼠和人类神经元模型系统。3)验证的HIT的特征 小鼠和ipsc模型中的化合物。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PAK1 protein expression in the auditory cortex of schizophrenia subjects.
  • DOI:
    10.1371/journal.pone.0059458
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Deo AJ;Goldszer IM;Li S;DiBitetto JV;Henteleff R;Sampson A;Lewis DA;Penzes P;Sweet RA
  • 通讯作者:
    Sweet RA
A Kalirin missense mutation enhances dendritic RhoA signaling and leads to regression of cortical dendritic arbors across development.
Disrupted-in-Schizophrenia 1 (DISC1) regulates spines of the glutamate synapse via Rac1.
  • DOI:
    10.1038/nn.2487
  • 发表时间:
    2010-03
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Hayashi-Takagi, Akiko;Takaki, Manabu;Graziane, Nick;Seshadri, Saurav;Murdoch, Hannah;Dunlop, Allan J.;Makino, Yuichi;Seshadri, Anupamaa J.;Ishizuka, Koko;Srivastava, Deepak P.;Xie, Zhong;Baraban, Jay M.;Houslay, Miles D.;Tomoda, Toshifumi;Brandon, Nicholas J.;Kamiya, Atsushi;Yan, Zhen;Penzes, Peter;Sawa, Akira
  • 通讯作者:
    Sawa, Akira
Epac2-mediated dendritic spine remodeling: implications for disease.
EPAC2介导的树突状脊柱重塑:对疾病的影响。
  • DOI:
    10.1016/j.mcn.2010.11.008
  • 发表时间:
    2011-02
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Penzes, Peter;Woolfrey, Kevin M.;Srivastava, Deepak P.
  • 通讯作者:
    Srivastava, Deepak P.
Developmental Trajectories of Auditory Cortex Synaptic Structures and Gap-Prepulse Inhibition of Acoustic Startle Between Early Adolescence and Young Adulthood in Mice.
  • DOI:
    10.1093/cercor/bhv040
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Caitlin E. Moyer;S. Erickson;K. Fish;E. Thiels;P. Penzes;R. Sweet
  • 通讯作者:
    Caitlin E. Moyer;S. Erickson;K. Fish;E. Thiels;P. Penzes;R. Sweet
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Penzes其他文献

Peter Penzes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Penzes', 18)}}的其他基金

Neuronal excitability and copy number variation disorders
神经元兴奋性和拷贝数变异障碍
  • 批准号:
    10039790
  • 财政年份:
    2020
  • 资助金额:
    $ 78.21万
  • 项目类别:
Neuronal excitability and copy number variation disorders
神经元兴奋性和拷贝数变异障碍
  • 批准号:
    10250497
  • 财政年份:
    2020
  • 资助金额:
    $ 78.21万
  • 项目类别:
Neuronal excitability and copy number variation disorders
神经元兴奋性和拷贝数变异障碍
  • 批准号:
    10407640
  • 财政年份:
    2020
  • 资助金额:
    $ 78.21万
  • 项目类别:
Neuronal excitability and copy number variation disorders
神经元兴奋性和拷贝数变异障碍
  • 批准号:
    10626765
  • 财政年份:
    2020
  • 资助金额:
    $ 78.21万
  • 项目类别:
Adhesion molecules and developmental epilepsy disorders
粘附分子与发育性癫痫病
  • 批准号:
    10592736
  • 财政年份:
    2017
  • 资助金额:
    $ 78.21万
  • 项目类别:
Postsynaptic roles of ankyrins
锚蛋白的突触后作用
  • 批准号:
    10629210
  • 财政年份:
    2015
  • 资助金额:
    $ 78.21万
  • 项目类别:
Postsynaptic roles of ankyrins
锚蛋白的突触后作用
  • 批准号:
    10365120
  • 财政年份:
    2015
  • 资助金额:
    $ 78.21万
  • 项目类别:
Molecular mechanisms of abnormal dendritic spine plasticity in schizophrenia
精神分裂症树突棘可塑性异常的分子机制
  • 批准号:
    8287503
  • 财政年份:
    2012
  • 资助金额:
    $ 78.21万
  • 项目类别:
Synaptic and dendritic dysfunction in psychiatric disorders
精神疾病中的突触和树突功能障碍
  • 批准号:
    9402750
  • 财政年份:
    2012
  • 资助金额:
    $ 78.21万
  • 项目类别:
Molecular mechanisms of abnormal dendritic spine plasticity in schizophrenia
精神分裂症树突棘可塑性异常的分子机制
  • 批准号:
    8605620
  • 财政年份:
    2012
  • 资助金额:
    $ 78.21万
  • 项目类别:

相似海外基金

Postdoctoral Fellowship: MPS-Ascend: Coarse-Grained Modeling of Aggrecan- Mimetic Copolymers: Polymer Design and Architecture Effects on Structure and Phase Behavior
博士后奖学金:MPS-Ascend:聚集蛋白聚糖模拟共聚物的粗粒度建模:聚合物设计和结构对结构和相行为的影响
  • 批准号:
    2316666
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Fellowship Award
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
  • 批准号:
    2334509
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Standard Grant
Architecture, dynamics and cell-specific behavior of tau condensates
tau 凝聚物的结构、动力学和细胞特异性行为
  • 批准号:
    10662730
  • 财政年份:
    2023
  • 资助金额:
    $ 78.21万
  • 项目类别:
NSF-BSF: Natural selection on the social interactions that mediate collective behavior: ecological pressures and genomic architecture
NSF-BSF:介导集体行为的社会互动的自然选择:生态压力和基因组结构
  • 批准号:
    1940647
  • 财政年份:
    2020
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Continuing Grant
Description method and formal verification method with section behavior model based on software architecture
基于软件体系结构的分段行为模型描述方法和形式化验证方法
  • 批准号:
    19K11911
  • 财政年份:
    2019
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Genetic Architecture and Proximate Mechanisms Underlying Indirect Genetic Effects on Cooperative Antipredator Behavior
职业:间接遗传效应对合作性反捕食者行为的遗传结构和直接机制
  • 批准号:
    1453536
  • 财政年份:
    2015
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Continuing Grant
Investigation of the influence of architecture and doping of diamond like carbon coatings on the damage behavior under cyclic mechanical stress
研究类金刚石碳涂层的结构和掺杂对循环机械应力下损伤行为的影响
  • 批准号:
    279491470
  • 财政年份:
    2015
  • 资助金额:
    $ 78.21万
  • 项目类别:
    Research Grants
The Genetic Architecture of Aggressive Behavior
攻击行为的遗传结构
  • 批准号:
    6935104
  • 财政年份:
    2005
  • 资助金额:
    $ 78.21万
  • 项目类别:
The Genetic Architecture of Aggressive Behavior
攻击行为的遗传结构
  • 批准号:
    7246470
  • 财政年份:
    2005
  • 资助金额:
    $ 78.21万
  • 项目类别:
The Genetic Architecture of Aggressive Behavior
攻击行为的遗传结构
  • 批准号:
    7065220
  • 财政年份:
    2005
  • 资助金额:
    $ 78.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了