Cueing COVID-19: NLM Administrative Supplement for Research on Coronavirus Disease 2019
提示 COVID-19:NLM 2019 年冠状病毒病研究行政补充
基本信息
- 批准号:10177308
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-10 至 2021-07-09
- 项目状态:已结题
- 来源:
- 关键词:2019-nCoVAdministrative SupplementAgeCOVID-19Cardiovascular DiseasesCase StudyCharacteristicsClinicalClinical DataClinical ManagementComb animal structureCommunitiesComplexCoronavirusCoughingCountryCreatinineCuesDataData AggregationData ElementDemographic FactorsDevelopmentDiabetes MellitusDiagnosisDiagnosticDiagnostic testsDiseaseDocumentationElderlyElectronic Health RecordElementsEnsureEtiologyFatigueFeverFunctional disorderGoalsHealth care facilityHypertensionIndividualInfectionInflammatoryInfluenzaKnowledgeLaboratoriesLung diseasesMedicalMethodsModelingMorbidity - disease rateNatureOrganPatientsPatternPerformancePhasePlasmaPredictive ValueProviderPublic HealthRadiology SpecialtyResearchResourcesRespiratory FailureSepsisSeptic ShockSeveritiesSignal TransductionSurveysSymptomsSyndromeTest ResultTestingUnited States National Institutes of HealthVirusVisualassociated symptombasechest computed tomographyclinical careclinical decision supportcomorbiditydesigndiagnostic accuracyevidence basefluhealth economicshigh riskinformation gatheringmortalitymortality risknoveloptimal treatmentspandemic diseaseparent grantpreferenceresearch clinical testingresponsesupport toolstreatment as usualusabilityuser centered design
项目摘要
PROJECT SUMMARY
The variability and the complexity of the data needed for clinical care requires clinicians to accurately and
efficiently recognize COVID-19 amongst individuals, ranging from asymptomatic infection to multiorgan and
systemic manifestations. COVID-19, like sepsis, involves different disease etiologies that span a wide range of
syndromes (e.g., initial, inflammatory, hyperinflammatory response). Because patients can present with mild,
moderate, or severe symptoms, clinicians must both identify the disease stage and optimal treatment. The
factors that trigger severe illness in COVID-19 patients are not completely understood. Like other complex,
challenging diagnoses, clinicians in the trenches struggle to diagnose and treat patients using data available in
the electronic health record (EHR). In our current NIH NLM R01 “Signaling Sepsis: Developing a Framework to
Optimize Alert Design”, we created sepsis specific enhanced visual display models that outranked preference
and performance when compared with the usual care of fragmented, non-directed information gathering. For this
supplement, we propose the design and development of COVID-19 diagnosis and clinical management
enhanced visual display models to support clinicians’ recognition of critical phases in COVID-19
diagnosis and treatment decisions. In order to create the models, we will identify relevant diagnostic and
treatment data elements that will include clinical characteristics, laboratory results, and radiology results (e.g.,
chest CT). Our project will survey emerging models of COVID-19 and its stages, and ensure our models are
congruent with best practices that emerge as our knowledge as a medical community evolves. The models
provide an EHR based method to mine clinical data to identify the presence of COVID-19 which supports the
variety of ways in which COVID-19 presents, availability of data elements, accuracy of diagnostic tests, and the
highly infective nature of the disease. Specific Aim 1: To identify emerging patient-specific clinical features of
COVID-19 and testing analytics to present critical information for COVID-19 diagnosis and clinical management.
Elements include the characteristics listed above (e.g., symptoms, co-morbidities) plus COVID-19 specific test
results, including data specific to the tests’ positive and negative predictive values. Specific Aim 2: To develop
an EHR embedded CDS tool using our COVID-19 enhanced visual display models using synthesized information
obtained through the NLM parent grant and Specific Aim 1. Evaluate the technical feasibility and usability of the
novel COVID-19 CDS tool. Why It Matters: During a pandemic, there’s no room for ambiguity as clinicians are
required to comb through the EHR. The ability to better visualize and interpret EHR data supports optimal
diagnosis and clinical management. Our enhanced visual display models will support clinicians as they evaluate
demographic factors, underlying conditions, and comorbidities that identify patients at higher risk of morbidity
and mortality and will therefore drive better clinical management.
项目摘要
临床护理所需的数据的可变性和复杂性要求临床医生准确和
有效识别个体之间的COVID-19,从无症状感染到多器官感染,
系统性表现。COVID-19与脓毒症一样,涉及不同的疾病病因,这些病因涵盖广泛的
综合征(例如,初始、炎性、高度炎性反应)。因为患者可能会出现轻度,
中度或重度症状,临床医生必须确定疾病阶段和最佳治疗。的
引发COVID-19患者严重疾病的因素尚未完全了解。像其他复杂的,
具有挑战性的诊断,在战壕中的临床医生努力诊断和治疗患者使用的数据,
电子健康记录(EHR)。在我们目前的NIH NLM R 01“信号脓毒症:开发一个框架,
优化警报设计”,我们创建了脓毒症特异性增强的视觉显示模型,
和性能相比,通常的照顾碎片,非定向信息收集。为此
作为补充,我们提出了COVID-19诊断和临床管理的设计和开发
增强的视觉显示模型,以支持临床医生识别COVID-19的关键阶段
诊断和治疗决策。为了创建模型,我们将确定相关的诊断和
包括临床特征、实验室结果和放射学结果的治疗数据元素(例如,
胸部CT)。我们的项目将调查COVID-19及其阶段的新兴模型,并确保我们的模型
与我们作为医学界的知识发展而出现的最佳实践相一致。模型
提供一种基于EHR的方法来挖掘临床数据,以识别COVID-19的存在,
COVID-19呈现的各种方式,数据元素的可用性,诊断测试的准确性,以及
这种疾病的高传染性。具体目标1:确定新出现的患者特异性临床特征,
COVID-19和测试分析为COVID-19诊断和临床管理提供关键信息。
元素包括上面列出的特征(例如,症状、合并症)加COVID-19特异性检测
结果,包括特定于测试的阳性和阴性预测值的数据。具体目标2:发展
EHR嵌入式CDS工具,使用我们的COVID-19增强视觉显示模型,使用合成信息
通过NLM父母补助金和具体目标1获得。评估的技术可行性和可用性
新型COVID-19 CDS工具。重要性:在大流行期间,临床医生没有模棱两可的余地
需要梳理电子病历更好地可视化和解释EHR数据的能力支持最佳的
诊断和临床管理。我们增强的视觉显示模型将支持临床医生,因为他们评估
确定患者发病风险较高的人口统计学因素、基础疾病和合并症
和死亡率,因此将推动更好的临床管理。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Score at the Door: A retrospective data analysis of sepsis scoring criteria in the Emergency Department.
门口评分:急诊科脓毒症评分标准的回顾性数据分析。
- DOI:10.1177/2327857919081071
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bonk,Christopher;Schubel,Laura;Ferrell,Brandon;Ramdeen,Sanjhai;Littlejohn,Robin;Ladkany,Diana;Miller,Kristen
- 通讯作者:Miller,Kristen
Data-driven approach to Early Warning Score-based alert management.
- DOI:10.1136/bmjoq-2017-000088
- 发表时间:2018
- 期刊:
- 影响因子:1.4
- 作者:Capan M;Hoover S;Miller KE;Pal C;Glasgow JM;Jackson EV;Arnold RC
- 通讯作者:Arnold RC
A Framework to Tackle Risk Identification and Presentation Challenges in Sepsis.
应对脓毒症风险识别和呈现挑战的框架。
- DOI:10.24150/ajhm/2018.002
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Capan,Muge;Mosby,Danielle;Miller,Kristen;Tao,Jun;Wu,Pan;Weintraub,William;Kowalski,Rebecca;Arnold,Ryan
- 通讯作者:Arnold,Ryan
FUTURES: Forecasting the Unexpected Transfer to Upgraded REsources in Sepsis.
未来:预测脓毒症中意外向升级资源的转移。
- DOI:10.1177/2327857919081047
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Profozich,Alexa;Sytsma,Trevor;Arnold,Ryan;Miller,Kristen;Capan,Muge
- 通讯作者:Capan,Muge
Frequent temporal patterns of physiological and biological biomarkers and their evolution in sepsis.
脓毒症中生理和生物标志物的频繁时间模式及其演变。
- DOI:10.1016/j.artmed.2023.102576
- 发表时间:2023
- 期刊:
- 影响因子:7.5
- 作者:Jazayeri,Ali;Yang,ChristopherC;Capan,Muge
- 通讯作者:Capan,Muge
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristen Elizabeth Miller其他文献
Kristen Elizabeth Miller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristen Elizabeth Miller', 18)}}的其他基金
Signaling Sepsis: Developing a framework to optimize alert design
脓毒症信号:开发优化警报设计的框架
- 批准号:
9346086 - 财政年份:2016
- 资助金额:
$ 7.5万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别: