Characterizing COVID-19 Patients through a Community Health Information Exchange and EHR databases
通过社区健康信息交换和 EHR 数据库描述 COVID-19 患者的特征
基本信息
- 批准号:10177252
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsBackCOVID-19COVID-19 pandemicCenters for Disease Control and Prevention (U.S.)Cessation of lifeChillsClinicalClinical Course of DiseaseClinical DataCommunitiesCommunity HealthContact TracingCoronavirusCoughingDataData DiscoveryData SetDatabasesDimensionsDisadvantagedDiseaseEarElectronic Health RecordFeverFoundationsGeographic LocationsGoalsGrantHeadacheHealthHealth PersonnelHealth systemIncidenceIndianaIndividualInfectionInfluenzaInterventionKnowledgeLearningMethodsMyalgiaNatureParentsPatient CarePatient MonitoringPatientsPhenotypePopulationPopulation SurveillancePublic HealthResearchResourcesSeveritiesShortness of BreathSigns and SymptomsSmell PerceptionSore ThroatSourceTaste PerceptionTestingTimeTreatment outcomeWritingbaseclinical data warehousecohortdata exchangedata qualitydemographicsdisease transmissionelectronic dataexperiencehealth care service organizationhealth dataimprovedinnovationinterestnovelnovel strategiespandemic diseaserespiratory distress syndromeseropositivesexstructured datasymptomatologytransmission process
项目摘要
Project Summary/Abstract
The COVID-19 pandemic is a significant public health problem that will require novel approaches for
management and intervention. Knowledge of the disease’s transmission, symptomatology, clinical
course, treatment and outcomes is rapidly evolving based on many sources. An important source for
advancing this knowledge are data from electronic health records (EHR) and health information
exchanges (HIE) because they can provide a real-time, unvarnished view of the disease. However,
the initially “invisible” nature of the disease makes clear that clinicians and public health personnel
were at a significant disadvantage in discovering and quantifying the pandemic. There is an urgent
need to learn rapidly from EHR and other data to improve discovery and monitoring of patients
infected by the coronavirus. The evolving dynamic and understanding of the incidence and course of
COVID-19 requires that we develop new methods for discovery from data. The long-term goal of our
research is to develop collaborative filtering algorithms to facilitate access to and analysis of clinical
data. The goal of this application is to characterize COVID-19 patients through data in a community
HIE, specifically the Indiana Network for Patient Care (INPC) within Indiana’s HIE (IHIE), and
understand how that characterization differs from that within the EHRs of individual health systems.
Understanding how COVID-19 patients are represented in HIEs and EHRs will build an important
foundation for downstream computational activities, such as real-time discovery, public health
surveillance, intervention management and contact tracing. The two specific aims of this project are
to (1) extract a cohort of patients suffering from COVID-19 and similar diseases from IHIE and (2)
characterize patients according to several dimensions, such as demographics, signs and symptoms,
and disease course using both the INPC as well as separate EHR data sets. The data, going back to
1/1/2015, will be extracted from the INPC, and the clinical data warehouses at IU Health and
Eskenazi Health, two of our major health system partners. As of this writing, 230,749 individuals in
Indiana (3.4 percent of the population of 6.73m) have been tested for the coronavirus, of whom
32,078 (13.9 percent) have tested positive. We will apply computational phenotyping approaches
using both HIE and individual EHR data in order to help us evaluate to what degree data from
individual EHRs can help approximate characterizations based on HIE data. This proposal is
significant because it will help us understand how HIE and EHR data can be used to characterize
both COVID-19 and non-COVID-19 patients. It is innovative because it leverages multiple
computational phenotyping methods on both individual organizations’ EHR, as well as HIE, data to
generate a comprehensive characterization of COVID-19 and non-COVID-19 patients.
项目摘要/摘要
新冠肺炎大流行是一个重大的公共卫生问题,需要采取新的方法来应对
管理和干预。疾病传播、症状学、临床知识
当然,基于许多来源,治疗和结果正在迅速演变。一个重要的来源
来自电子健康记录(EHR)和健康信息的数据推动了这一知识的发展
交流(HIE),因为它们可以提供对疾病的实时、原封不动的看法。然而,
这种疾病最初的“隐形”性质清楚地表明,临床医生和公共卫生人员
在发现和量化大流行方面处于明显的劣势。有一件急事
需要从电子病历和其他数据中快速学习,以改进对患者的发现和监控
被冠状病毒感染。疾病的发生和过程的演变动态和认识
新冠肺炎要求我们开发从数据中发现数据的新方法。我们的长期目标是
研究是开发协作过滤算法,以方便访问和分析临床
数据。此应用程序的目标是通过社区中的数据来描述新冠肺炎患者的特征
HIE,特别是印第安纳州HIE内的印第安纳患者护理网络(INPC),以及
了解这一特征与个别卫生系统EHR中的特征有何不同。
了解新冠肺炎患者在HIE和EHR中的代表将建立一个重要的
为下游计算活动奠定基础,如实时发现、公共卫生
监测、干预管理和接触者追踪。这个项目的两个具体目标是
(1)从新生儿缺氧缺血性脑病(IHIE)中提取新冠肺炎及类似疾病患者的队列;(2)
根据人口统计、体征和症状等几个维度来描述患者的特征,
以及使用INPC和单独的EHR数据集的疾病病程。数据,回溯到
2015年1月1日,将从INPC和IU Health和
Eskenazi Health,我们的两个主要卫生系统合作伙伴。截至撰写本文时,全球有230,749人
印第安纳州(673万人口中的3.4%)接受了冠状病毒检测,其中
有32,078人(13.9%)检测呈阳性。我们将应用计算表型方法
同时使用HIE和个人EHR数据,以帮助我们评估数据在多大程度上
单独的EHR可以帮助根据HIE数据近似描述特征。这项建议是
意义重大,因为它将帮助我们了解如何使用HIE和EHR数据来表征
包括新冠肺炎和非新冠肺炎患者。它具有创新性,因为它利用了多个
两个组织的EHR和HIE数据的计算表型方法
生成新冠肺炎和非新冠肺炎患者的全面特征。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Deep Generative Model for Molecule Optimization via One Fragment Modification.
- DOI:10.1038/s42256-021-00410-2
- 发表时间:2021-12
- 期刊:
- 影响因子:23.8
- 作者:Chen Z;Min MR;Parthasarathy S;Ning X
- 通讯作者:Ning X
Preliminary evaluation of the Chest Pain Dashboard, a FHIR-based approach for integrating health information exchange information directly into the clinical workflow.
胸痛仪表板的初步评估,这是一种基于 FHIR 的方法,用于将健康信息交换信息直接集成到临床工作流程中。
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Schleyer,TitusKL;Rahurkar,Saurabh;Baublet,AllissiaM;Kochmann,Matthias;Ning,Xia;Martin,DouglasK;Finnell,JohnT;Kelley,KeithW;FHIRDevelopmentTeam;Schaffer,JasonT
- 通讯作者:Schaffer,JasonT
Improving information retrieval from electronic health records using dynamic and multi-collaborative filtering.
- DOI:10.1371/journal.pone.0255467
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Ning X;Fan Z;Burgun E;Ren Z;Schleyer T
- 通讯作者:Schleyer T
Hybrid collaborative filtering methods for recommending search terms to clinicians.
- DOI:10.1016/j.jbi.2020.103635
- 发表时间:2021-01
- 期刊:
- 影响因子:4.5
- 作者:Ren Z;Peng B;Schleyer TK;Ning X
- 通讯作者:Ning X
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIA NING其他文献
XIA NING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIA NING', 18)}}的其他基金
COVID-19 disease course analysis using multi-site large-scale EHR data
使用多站点大规模 EHR 数据进行 COVID-19 病程分析
- 批准号:
10196001 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
COVID-19 disease course analysis using multi-site large-scale EHR data
使用多站点大规模 EHR 数据进行 COVID-19 病程分析
- 批准号:
10380682 - 财政年份:2021
- 资助金额:
$ 7.5万 - 项目类别:
Enhancing information retrieval in electronic health records through collaborative filtering
通过协作过滤增强电子健康记录中的信息检索
- 批准号:
9922983 - 财政年份:2018
- 资助金额:
$ 7.5万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 7.5万 - 项目类别:
Continuing Grant