Enhancing information retrieval in electronic health records through collaborative filtering
通过协作过滤增强电子健康记录中的信息检索
基本信息
- 批准号:9922983
- 负责人:
- 金额:$ 54.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAddressAdmission activityAdultAlgorithmsAttitudeBooksChest PainClinicalCluster randomized trialCognitiveComputerized Patient RecordsDataDevelopmentElectronic Health RecordEmergency Department PhysicianEvolutionFast Healthcare Interoperability ResourcesFeedbackFocus GroupsGoalsHealthHealthcareHome environmentIndianaInformation RetrievalInterventionLength of StayManualsMeasuresMethodsNatureOnline SystemsOutcomePatient CarePatient RightsPatientsPatternPerceptionPhysiciansProceduresProcessProcess MeasureRandomizedRecommendationSchemeSourceSuggestionTestingTimeVisitWalkingWorkbaseclinical practicedesignexperienceexperimental studyhigh riskimprovedinnovationinteresttrial designusabilityuser centered designvirtualweb site
项目摘要
Project Abstract
When we consider buying a book on Amazon's Website, we often benefit from items listed in a section called
"Customers also viewed." These recommendations, generated by a method called collaborative filtering (CF),
suggest items of possible interest based on what other customers have viewed and purchased. However,
when clinicians search the electronic health record (EHR) with regard to a particular patient problem, the EHR
does not make suggestions for potentially useful information. Instead, it requires clinicians to go through the
same manual, cumbersome and laborious process of searching for and retrieving information for similar
patients/problems every single time. This limitation is magnified in high-risk situations, such as managing chest
pain in the emergency department (ED). The goal of this project is to implement and evaluate CF as a method
to improve information retrieval from EHRs and reduce cognitive overload. The central hypothesis of our
proposal is that CF will (1) help clinicians retrieve and review the right patient information more efficiently and
effectively than current methods; and (2) score higher on usefulness and ease-of-use than current EHRs. We
will implement our CF algorithms in CareWeb Plus, a SMART-on-FHIR app we are currently building to
integrate relevant information from the Indiana Network for Patient Care (INPC), Indiana's major health
information exchange, with the ED workflow in Cerner/Epic. Our aims are to (1) extend CareWeb Plus to
support collaborative filtering; (2) design and implement collaborative filtering algorithms; (3) and implement
and evaluate CareWeb Plus in two adult emergency departments. Over 190 clinicians will use and evaluate
CareWeb Plus in the two busiest emergency departments in Indianapolis (> 200,000 patient visits/year
collectively), with more than 13,000 of them related to chest pain. We will evaluate (1) process measures, such
as CareWeb Plus use, information retrieval and viewing patterns, and time to key decisions (first order,
admission, discharge); (2) outcomes variables, such as lab/procedure utilization, ED length of stay and
admission rate; and (3) user perceptions and attitudes regarding usefulness and usability. Our project is
significant because it addresses two current, major limitations of EHRs in clinical practice. (1) Clinicians have
difficulty reviewing voluminous patient-specific information, especially from multiple sources, efficiently to find
relevant facts, especially in time-sensitive situations. (2) EHR users have little to no ability to change the static
and inflexible nature of EHR interfaces for information retrieval. Our proposal is innovative because it uses CF,
a method for tailoring information retrieval well-established in many fields except healthcare, to help solve
these two problems. Collaborative filtering will provide a continually adapting, dynamic paradigm of
informational retrieval and presentation that naturally follows the evolution of clinical practice. In addition, our
recommendations are generated from both physicians and patients, and thus go beyond the traditional scheme
of CF algorithms that only look at user or item relations to generate recommendations.
项目摘要
当我们考虑在亚马逊网站上购买一本书时,我们经常会从一个名为
”顾客也看了。“这些推荐是由一种叫做协同过滤(CF)的方法产生的,
根据其他客户浏览和购买的内容建议可能感兴趣的项目。然而,在这方面,
当临床医生搜索关于特定患者问题的电子健康记录(EHR)时,
不会对可能有用的信息提出建议。相反,它要求临床医生通过
同样的手动,繁琐和费力的过程中搜索和检索信息,为类似的
患者/问题每一次。这种局限性在高风险的情况下被放大,例如管理胸部
急诊室疼痛(艾德)。这个项目的目标是实施和评估CF作为一种方法
提高从电子病历中检索信息的能力,减少认知超载。我们的核心假设是
CF将(1)帮助临床医生更有效地检索和审查正确的患者信息,
有效地比目前的方法;和(2)得分较高的有用性和易用性比目前的EHR。我们
将在CareWeb Plus中实施我们的CF算法,CareWeb Plus是我们目前正在构建的SMART on FHIR应用程序,
整合来自印第安纳州患者护理网络(INPC)、印第安纳州的主要健康
通过Cerner/Epic中的艾德工作流程进行信息交换。我们的目标是(1)将CareWeb Plus扩展到
支持协同过滤;(2)设计和实现协同过滤算法;(3)实现
并在两个成人急诊科评估CareWeb Plus。超过190名临床医生将使用和评估
CareWeb Plus在印第安纳波利斯两个最繁忙的急诊科(> 200,000患者就诊/年
总的来说,其中超过13,000例与胸痛有关。我们将评估(1)过程措施,例如
作为CareWebPlus的使用,信息检索和查看模式,以及关键决策的时间(第一顺序,
入院、出院);(2)结局变量,如实验室/程序利用率、艾德住院时间和
接纳率;(3)用户对有用性和可用性的看法和态度。我们的项目是
重要的是,它解决了目前EHR在临床实践中的两个主要局限性。(1)临床医生
难以有效审查大量患者特定信息,尤其是来自多个来源的信息,
相关的事实,特别是在时间敏感的情况下。(2)EHR用户几乎没有能力改变静态
以及用于信息检索的EHR接口的不灵活性。我们的建议是创新的,因为它使用CF,
一种在除医疗保健以外的许多领域建立的定制信息检索方法,
这两个问题。协同过滤将提供一个不断适应的,动态的范例,
信息检索和呈现,自然遵循临床实践的演变。另外我们
医生和患者都可以提出建议,因此超越了传统的方案
CF算法只考虑用户或项目关系来生成推荐。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIA NING其他文献
XIA NING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIA NING', 18)}}的其他基金
COVID-19 disease course analysis using multi-site large-scale EHR data
使用多站点大规模 EHR 数据进行 COVID-19 病程分析
- 批准号:
10196001 - 财政年份:2021
- 资助金额:
$ 54.16万 - 项目类别:
COVID-19 disease course analysis using multi-site large-scale EHR data
使用多站点大规模 EHR 数据进行 COVID-19 病程分析
- 批准号:
10380682 - 财政年份:2021
- 资助金额:
$ 54.16万 - 项目类别:
Characterizing COVID-19 Patients through a Community Health Information Exchange and EHR databases
通过社区健康信息交换和 EHR 数据库描述 COVID-19 患者的特征
- 批准号:
10177252 - 财政年份:2020
- 资助金额:
$ 54.16万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 54.16万 - 项目类别:
Research Grant