COVID-19 disease course analysis using multi-site large-scale EHR data
使用多站点大规模 EHR 数据进行 COVID-19 病程分析
基本信息
- 批准号:10380682
- 负责人:
- 金额:$ 17.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgeAgeusiaAlgorithmic SoftwareAlgorithmsArtificial IntelligenceCOVID-19COVID-19 pandemicCOVID-19 patientCardiovascular DiseasesCaringCase StudyCenters for Disease Control and Prevention (U.S.)ChillsClinicalClinical Course of DiseaseClinical DataCluster AnalysisCommunicable DiseasesComputer AnalysisCoronavirusCoughingCountryCritical CareDataData CollectionData SetDiabetes MellitusDiagnosisDisadvantagedDiseaseDisease ManagementDisease ProgressionDyspneaElectronic Health RecordFeverFunctional disorderGeographic LocationsGoalsGroupingGuidelinesHeadacheHealthHypoxiaImageIndianaInterdisciplinary StudyKidney DiseasesKnowledgeLungMedical centerMethodsModelingMyalgiaOhioOutcomePatient CarePatientsPhenotypePhysiciansPlayPneumoniaPostdoctoral FellowPublic HealthPublishingResearchResearch PersonnelRespiratory FailureRoleSARS-CoV-2 infectionSalvelinusSeveritiesSeverity of illnessShockShortness of BreathSigns and SymptomsSiteSmell PerceptionSourceSymptomsSystemTimeTreatment outcomeUniversitiesWorkbaseclinical effectclinical practicecohortcomorbiditycoronavirus diseasedisease transmissionelectronic datahealth economicsimprovedinnovationnovelpandemic diseasepatient populationrespiratoryresponsesocialsymptomatologytool
项目摘要
Project Summary/Abstract
Since its first case reported in December 2019, the coronavirus disease-2019 (COVID-19) has caused a pan-
demic in 188 countries/regions, and has precipitated an unprecedented health, economic and social crisis. In
order to cope with the volatile dynamic and severity of the pandemic, it is imperative that we characterize the
various clinical courses of COVID-19 infection, and determine whether and how demographic, clinical and other
variables influence them. Knowledge of the disease's transmission, symptomatology, clinical course, treatment
and outcomes is rapidly evolving based on many sources. An important source for advancing this knowledge
is data from electronic health records (EHR) and health information exchanges (HIE) because they can pro-
vide a real-time, unvarnished view of the disease. Using large-scale, well-integrated and rich EHR data enables
comprehensive profiling and quantification of the COVID-19 disease course that can directly inform clinical prac-
tice. The long-term goal of our research is to develop Artificial Intelligence (AI) tools to facilitate access to and
analysis of clinical data. The goal of this application is to develop effective algorithms and tools to mine clinical
data to categorize disease courses of COVID-19, and determine the effect of clinical and other variables asso-
ciated with them. We will develop our algorithms using data from a large and comprehensive health information
exchange, the Indiana Network for Patient Care (INPC), which has about 40,000 COVID-19 patients and fairly
complete EHR data about them. We will evaluate the algorithms against other data sets, including EHR data
from the OSU Wexner Medical Center and the National COVID Cohort Collaborative (N3C). The specific aims
of this project are to (1) develop COVID-19 disease course groupings, (2) relate comorbidities and other clinical
variables to the COVID-19 disease course, and (3) validate the developed algorithms on N3C data. This pro-
posal is significant because the methods developed in this project have the potential to significantly increase our
capability for computational analysis of large and rich patient data during the pandemic and beyond; the knowl-
edge derived from our comprehensive profiling of COVID-19 courses over large, inclusive patient populations
supported by rich EHR data can positively impact clinical practice; and the tools developed in this project will be
released to the public as a free COVID-19 research re- source. It is innovative because our methods integrate
novel methods such as patient clustering using clinical variables and disease progression trajectories, and pa-
tient trajectory comparison, with established univariate and predictive analysis; our primary approach will lever-
age the oldest and one of the country's largest HIEs to derive detailed and comprehensive knowledge about a
large patient population; and the strong preliminary data generated by this project can help improve COVID-19
patient phenotyping, disease characterization and diagnosis.
项目概要/摘要
自 2019 年 12 月报告第一例病例以来,2019 年冠状病毒病 (COVID-19) 已引起广泛关注
疫情在 188 个国家/地区爆发,并引发了前所未有的健康、经济和社会危机。在
为了应对这一流行病的不稳定动态和严重性,我们必须确定这一流行病的特征
COVID-19 感染的各种临床过程,并确定人口统计、临床和其他方面是否以及如何
变量会影响它们。了解疾病的传播、症状、临床过程、治疗
其结果正在根据多种来源迅速演变。推进这方面知识的重要来源
是来自电子健康记录(EHR)和健康信息交换(HIE)的数据,因为它们可以促进
提供疾病的实时、真实的视图。使用大规模、集成良好且丰富的 EHR 数据可以
对 COVID-19 病程进行全面分析和量化,可以直接为临床实践提供信息
泰斯。我们研究的长期目标是开发人工智能 (AI) 工具,以方便访问和
临床数据分析。该应用程序的目标是开发有效的算法和工具来挖掘临床数据
数据对 COVID-19 的病程进行分类,并确定临床和其他变量的影响
与他们交谈。我们将使用来自大量综合健康信息的数据来开发我们的算法
印第安纳州患者护理网络 (INNPC) 拥有约 40,000 名 COVID-19 患者,
有关他们的完整 EHR 数据。我们将根据其他数据集(包括 EHR 数据)评估算法
来自 OSU Wexner 医疗中心和国家新冠肺炎队列协作组织 (N3C)。具体目标
该项目的目标是 (1) 制定 COVID-19 病程分组,(2) 将合并症和其他临床疾病联系起来
COVID-19 病程的变量,以及 (3) 在 N3C 数据上验证开发的算法。这个亲
posal 很重要,因为该项目中开发的方法有可能显着提高我们的
在大流行期间及之后对大量丰富的患者数据进行计算分析的能力;知识-
优势源自我们对大量包容性患者群体的 COVID-19 课程的全面分析
丰富的 EHR 数据支持可以对临床实践产生积极影响;该项目中开发的工具将是
作为免费的 COVID-19 研究资源向公众发布。它是创新的,因为我们的方法整合了
新方法,例如使用临床变量和疾病进展轨迹进行患者聚类,以及
通过已建立的单变量和预测分析进行tient轨迹比较;我们的主要方法将利用——
年龄最大、全国最大的 HIE 之一,以获得有关某个领域的详细而全面的知识
患者群体庞大;该项目生成的强有力的初步数据可以帮助改善 COVID-19
患者表型、疾病特征和诊断。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding comorbidities and health disparities related to COVID-19: a comprehensive study of 776 936 cases and 1 362 545 controls in the state of Indiana, USA.
了解与Covid-19有关的合并症和健康差异:在美国印第安纳州对776 936病例和1 362 545个对照的全面研究。
- DOI:10.1093/jamiaopen/ooad002
- 发表时间:2023-04
- 期刊:
- 影响因子:2.1
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XIA NING其他文献
XIA NING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XIA NING', 18)}}的其他基金
COVID-19 disease course analysis using multi-site large-scale EHR data
使用多站点大规模 EHR 数据进行 COVID-19 病程分析
- 批准号:
10196001 - 财政年份:2021
- 资助金额:
$ 17.09万 - 项目类别:
Characterizing COVID-19 Patients through a Community Health Information Exchange and EHR databases
通过社区健康信息交换和 EHR 数据库描述 COVID-19 患者的特征
- 批准号:
10177252 - 财政年份:2020
- 资助金额:
$ 17.09万 - 项目类别:
Enhancing information retrieval in electronic health records through collaborative filtering
通过协作过滤增强电子健康记录中的信息检索
- 批准号:
9922983 - 财政年份:2018
- 资助金额:
$ 17.09万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 17.09万 - 项目类别:
Directed Grant