Improving Human fMRI through Modeling and Imaging Microvascular Dynamics: Administrative Supplement
通过微血管动力学建模和成像改善人类功能磁共振成像:行政补充
基本信息
- 批准号:10179989
- 负责人:
- 金额:$ 17.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:Administrative SupplementAnatomyAngiographyArchitectureBeliefBloodBlood VesselsBlood capillariesBlood flowBrainBrain MappingCaliberCerebral cortexContractsDataDevelopmentFormulationFunctional Magnetic Resonance ImagingFutureHumanImageImaging TechniquesKnowledgeLinkMagnetic Resonance ImagingMapsMeasuresModelingNeuronsPopulationProceduresPsyche structureResolutionRodentSignal TransductionSpecificitySpecimenTechniquesTechnologyTestingTreesValidationVisual Cortexarea striataarteriolebasecerebral blood volumehemodynamicsimprovedin vivooptical imagingreconstructionresponsespatiotemporaltwo photon microscopyvenule
项目摘要
PROJECT SUMMARY/ABSTRACT
All fMRI signals have a vascular origin, and this has been believed to be a major limitation to precise
spatiotemporal localization of neuronal activation when using hemodynamic functional contrast such as BOLD.
However, significant recent discoveries made using powerful ultrahigh-resolution optical imaging techniques
have challenged this belief. Unfortunately these measures require invasive procedures and therefore cannot
be performed in humans. Our aim is to transfer knowledge gained from these invasive studies into interpreting
human fMRI data in order to help fMRI reach its full potential. In this proposal we plan to combine detailed
maps of human macro- and meso-scale vasculature measured with high-resolution MRI with maps of the
micro-scale vasculature measured in human brain specimens with CLARITY-assisted microimaging. We will
then link this anatomical information with dynamic models built from 2-photon microscopy performed in rodents
where the changes in vessel diameter, blood flow and oxygenation can be measured directly in each vessel
type across all stages of the vascular hierarchy. We hypothesize that newly introduced models of hemo- and
vaso-dynamics built from 2-photon microscopy, linked with a detailed micro- and macroscopically mapped
human microvascular anatomy, can be exploited to improve the spatial and temporal specificity of human fMRI.
To supply human vasculature reconstructions to our models, we propose a two-scale approach. We first
advance 7 Tesla MR Angiography (MRA) techniques to image the pial vascular network as well as intracortical
vessels and vascular layers of the cerebral cortex to achieve a mesoscopic model. To form the micron-scale
model of vasculature at the capillary level, we will use the CLARITY technique to image the full vascular tree
(from arterioles through capillaries to venules) in human primary visual cortex.
To predict vasodynamic changes driven by neuronal activation, we will adapt a model derived from
dynamic in vivo 2-photon microscopy of vessel diameters in rodents to human microvascular anatomy. To
adapt this to human microvasculature requires a careful multi-stage transferal. First we will measure bulk
changes in microvessel diameter, a.k.a. cerebral blood volume (CBV), across multiple levels of the vascular
hierarchy and confirm that the model can predict the CBV-fMRI signal. The CBV-fMRI signal is used because it
is a vasodynamic signal directly reflecting vessel diameter changes occurring alongside local neuronal activity
(rather than the subsequent hemodynamic changes). After performing this validation we will build a dynamic
model of the microvascular tree in human cortex based on our vascular reconstruction, and again measure
CBV-fMRI changes across multiple levels of the vascular hierarchy. We will finally test the ability of this model
to improve the neuronal specificity of fMRI by imaging the functional architecture in human visual cortex. This
model will also enable the formulation and testing of hypotheses about the discriminability of fMRI responses
elicited from nearby neuronal populations, and guide development of future advanced acquisition technologies.
项目摘要/摘要
所有的fmri信号都来自血管,这一直被认为是精确的一个主要限制。
血流动力学功能对比时神经元激活的时空定位,如BOLD。
然而,最近使用强大的超高分辨率光学成像技术所取得的重大发现
已经挑战了这一信念。不幸的是,这些措施需要侵入性程序,因此不能
可以在人类身上进行。我们的目标是将从这些侵入性研究中获得的知识转化为口译
人类功能磁共振成像数据,以帮助功能磁共振成像充分发挥其潜力。在这份提案中,我们计划将详细的
用高分辨率磁共振成像测量的人体宏观和中尺度血管构筑图
用清晰度辅助显微成像测量人脑标本中的微尺度血管系统。我们会
然后将这些解剖学信息与啮齿动物双光子显微镜建立的动态模型联系起来。
其中血管直径、血流量和氧合的变化可以在每个血管中直接测量
在血管层次结构的所有阶段中键入。我们假设新引入的血液和血液模型
从双光子显微镜构建的血管动力学,与详细的微观和宏观映射相联系
人体微血管解剖学,可以用来提高人类功能磁共振成像的空间和时间特异性。
为了给我们的模型提供人体血管重建,我们提出了一种双尺度方法。我们首先
先进的7特斯拉磁共振血管成像(MRA)技术成像软脑膜血管网络以及皮质内
实现大脑皮层血管和血管各层的介观模型。以形成微米级的
在毛细血管水平的血管系统模型,我们将使用Clarity技术来成像完整的血管树
(从小动脉、毛细血管到小静脉)在人类初级视皮层。
为了预测由神经元激活驱动的血管动力学变化,我们将采用一个源自
啮齿动物体内血管直径的动态双光子显微镜对人体微血管解剖的影响。至
使其适应人类微血管系统需要仔细的多阶段移植。首先,我们将测量体积
微血管直径的变化,也称为。脑血容量(CBV),跨越多个水平的血管
并验证了该模型对CBV-fMRI信号的预测能力。使用CBV-fMRI信号是因为它
是直接反映局部神经元活动同时发生的血管直径变化的血管动力学信号吗?
(而不是随后的血流动力学变化)。执行此验证后,我们将构建一个动态
基于我们的血管重建的人脑皮质微血管树模型,并再次测量
CBV-fMRI在血管层次的多个层次上发生变化。我们将最终测试该模型的能力
目的:通过对人视皮层功能结构的成像,提高功能磁共振成像的神经元特异性。这
模型还将使关于功能磁共振反应的可区分性的假设的形成和测试成为可能
从附近的神经元群体中产生的信息,并指导未来先进采集技术的发展。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
Towards Optimising MRI Characterisation of Tissue (TOMCAT) Dataset including all Longitudinal Automatic Segmentation of Hippocampal Subfields (LASHiS) data.
优化组织 MRI 表征 (TOMCAT) 数据集,包括所有海马子域纵向自动分割 (LASHiS) 数据。
- DOI:10.1016/j.dib.2020.106043
- 发表时间:2020
- 期刊:
- 影响因子:1.2
- 作者:Shaw,ThomasB;York,Ashley;Barth,Markus;Bollmann,Steffen
- 通讯作者:Bollmann,Steffen
New acquisition techniques and their prospects for the achievable resolution of fMRI.
- DOI:10.1016/j.pneurobio.2020.101936
- 发表时间:2021-12
- 期刊:
- 影响因子:6.7
- 作者:Bollmann S;Barth M
- 通讯作者:Barth M
Modelling the depth-dependent VASO and BOLD responses in human primary visual cortex.
- DOI:10.1002/hbm.26094
- 发表时间:2023-02-01
- 期刊:
- 影响因子:4.8
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Rizzo Polimeni其他文献
Jonathan Rizzo Polimeni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Rizzo Polimeni', 18)}}的其他基金
High-Performance Gradient Coil for 7 Tesla MRI
用于 7 特斯拉 MRI 的高性能梯度线圈
- 批准号:
10630533 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
fMRI Technologies for Imaging at the Limit of Biological Spatiotemporal Resolution: Administrative Supplement
用于生物时空分辨率极限成像的 fMRI 技术:行政补充
- 批准号:
10833383 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10643880 - 财政年份:2021
- 资助金额:
$ 17.08万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10482354 - 财政年份:2021
- 资助金额:
$ 17.08万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10398277 - 财政年份:2021
- 资助金额:
$ 17.08万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9753356 - 财政年份:2016
- 资助金额:
$ 17.08万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9205860 - 财政年份:2016
- 资助金额:
$ 17.08万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9974595 - 财政年份:2016
- 资助金额:
$ 17.08万 - 项目类别:
Fast MRI at the Limit of Biological Temporal Resolution
生物时间分辨率极限的快速 MRI
- 批准号:
9428443 - 财政年份:2015
- 资助金额:
$ 17.08万 - 项目类别:
fMRI Technologies for Imaging at the Limit of Biological Spatiotemporal Resolution
生物时空分辨率极限成像的 fMRI 技术
- 批准号:
10382317 - 财政年份:2015
- 资助金额:
$ 17.08万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 17.08万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 17.08万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 17.08万 - 项目类别:
Studentship














{{item.name}}会员




