CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
基本信息
- 批准号:10398277
- 负责人:
- 金额:$ 17.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAnimal ModelAnimalsArchitectureBiologicalBloodBlood VesselsBlood flowBrainCerebrumClinical ResearchCommunicationComplexComputer ModelsCortical ColumnDataDementiaDiseaseExperimental DesignsFeedbackFellowshipFunctional Magnetic Resonance ImagingGoalsHealthHumanImageImaging technologyImpaired cognitionIndividualInstructionInvestigationInvestmentsKnowledgeMagnetic Resonance ImagingMeasurementMeasuresMedicalMental disordersMicroscopyMicrovascular DysfunctionModelingModernizationMotorNeuronsNeurosciencesNeurosciences ResearchOpticsOutputOxygenPatternPerformancePrincipal InvestigatorReportingResearch PersonnelResolutionSTEM researchSamplingSignal TransductionSpecificityTechniquesTestingTimeTranslatingTrustVisitWorkanatomic imagingbasebiophysical modelbrain circuitrybrain pathwaycareercomputer frameworkcomputerized toolscontrast imagingdesignhemodynamicsimprovedin vivoinsightnervous system disorderneural patterningneuroimagingprogramsrelating to nervous systemresponsetheoriestoolultra high resolutionvascular cognitive impairment and dementiavolunteer
项目摘要
Today, the most widespread tool for measuring whole-brain activity noninvasively is functional magnetic
resonance imaging (fMRI). Although fMRI tracks neural activity indirectly through measuring the associated
changes in blood flow, volume and oxygenation, recent evidence has suggested that these active
hemodynamic changes in the brain are far more precisely coordinated than previously believed, perhaps at
the fine spatial scale of the basic modules of functional architecture: cerebral cortical columns and layers. If
true, this could enable new studies of brain computation and circuitry as several cortical layers are the well-
known inputs and outputs along canonical feedforward and feedback pathways of brain communication.
The main challenge faced by this emerging field of “laminar fMRI” is how to interpret the complex
hemodynamic signals to infer the underlying patterns of neural activity.
Motivated by this, our overall goal is to improve our ability to measure neural activity from distinct cortical
layers with human fMRI through detailed biophysical modeling of the underlying hemodynamic response.
We will develop a new computational framework to simulate the fMRI signals using realistic microvascular
networks and dynamics of associated blood flow, volume, and oxygenation changes that accompany
neural activity. This framework has been validated using optical microscopy measures of the microvascular
anatomy and dynamics from small animal models, and here we extend it for the first time to the human
cortex. We will combine ultra-high-resolution in vivo vascular anatomical imaging data collected at 9.4
Tesla with our validated algorithm for synthesizing realistic microvascular networks to generate human
vascular models specific to individual volunteers, and use these to simulate fMRI responses to motor tasks
designed to activate specific cortical layers. We will then simulate responses of several forms of fMRI
contrast—that are each sensitive to different aspects of the complex hemodynamic response—and
compare our predictions to high-resolution fMRI measurements. Finally, to gain insight into whether fMRI
can be used correctly to infer neural activity within cortical layers, we will quantify the discriminability of
laminar fMRI by simulating various patterns of neural activity across layers and then comparing the
computed fMRI activation profiles. This will tell us which neural activity patterns can be distinguished from
one another, and which cannot, to help quantify the ability of laminar fMRI to decipher human brain
circuitry. We address a fundamental gap in our knowledge regarding the limits of human fMRI: whether
fMRI can accurately report on activation within distinct cortical layers. Our approach will allow us to quantify
how fMRI sees the neural activity through the “filter” of the vascular response, and provide insight into the
origins of newly-available fMRI contrasts. This will aid in the interpretability of fMRI for both neuroscience
research as well as for translational/clinical research by helping to remove unwanted effects of the
vasculature—to translate the observed fMRI patterns into neural activity patterns to better understand brain
function in health and disease.
RELEVANCE (See instructions):
Functional magnetic resonance imaging (fMRI) is the most widespread tool for measuring activity across
the entire brain noninvasively and has produced much of our knowledge of the functional organization in
the human brain, however fMRI does not measure neuron firing—it detects brain activity by measuring
changes in blood flow in the brain that delivers oxygen to the neurons. Here we seek to develop an
analysis framework that will allow us to more accurately infer which groups of neurons are firing based on
human fMRI data by using computational modeling of blood flow and blood oxygenation changes through
networks of the smallest blood vessels in the brain. Today fMRI is indispensable for experimental human
neuroscience; by improving the neural specificity of this technique, fMRI can become a more reliable tool
for measuring brain function in health and disease, expanding its utility in basic neuroscience and
translational/clinical research including investigations into neurological and psychiatric disease, and may
also provide deeper mechanistic understanding into small vessel disease and other vascular contributions
to cognitive impairment and dementia.
PHS 398 (Rev. 03/2020 Approved Through 02/28/2023) OMB No. 0925-0001
Page 2 Form Page 2
Program Director/Principal Investigator (Last, First, Middle): Polimeni, Jonathan Rizzo
今天,最广泛的无创测量全脑活动的工具是功能磁
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Rizzo Polimeni其他文献
Jonathan Rizzo Polimeni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Rizzo Polimeni', 18)}}的其他基金
High-Performance Gradient Coil for 7 Tesla MRI
用于 7 特斯拉 MRI 的高性能梯度线圈
- 批准号:
10630533 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
fMRI Technologies for Imaging at the Limit of Biological Spatiotemporal Resolution: Administrative Supplement
用于生物时空分辨率极限成像的 fMRI 技术:行政补充
- 批准号:
10833383 - 财政年份:2023
- 资助金额:
$ 17.4万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10643880 - 财政年份:2021
- 资助金额:
$ 17.4万 - 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
- 批准号:
10482354 - 财政年份:2021
- 资助金额:
$ 17.4万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9753356 - 财政年份:2016
- 资助金额:
$ 17.4万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics: Administrative Supplement
通过微血管动力学建模和成像改善人类功能磁共振成像:行政补充
- 批准号:
10179989 - 财政年份:2016
- 资助金额:
$ 17.4万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9205860 - 财政年份:2016
- 资助金额:
$ 17.4万 - 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
- 批准号:
9974595 - 财政年份:2016
- 资助金额:
$ 17.4万 - 项目类别:
Fast MRI at the Limit of Biological Temporal Resolution
生物时间分辨率极限的快速 MRI
- 批准号:
9428443 - 财政年份:2015
- 资助金额:
$ 17.4万 - 项目类别:
fMRI Technologies for Imaging at the Limit of Biological Spatiotemporal Resolution
生物时空分辨率极限成像的 fMRI 技术
- 批准号:
10382317 - 财政年份:2015
- 资助金额:
$ 17.4万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 17.4万 - 项目类别:
Research Grant














{{item.name}}会员




