Improving Human fMRI through Modeling and Imaging Microvascular Dynamics

通过微血管动力学建模和成像改善人类功能磁共振成像

基本信息

  • 批准号:
    9753356
  • 负责人:
  • 金额:
    $ 93.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT All fMRI signals have a vascular origin, and this has been believed to be a major limitation to precise spatiotemporal localization of neuronal activation when using hemodynamic functional contrast such as BOLD. However, significant recent discoveries made using powerful ultrahigh-resolution optical imaging techniques have challenged this belief. Unfortunately these measures require invasive procedures and therefore cannot be performed in humans. Our aim is to transfer knowledge gained from these invasive studies into interpreting human fMRI data in order to help fMRI reach its full potential. In this proposal we plan to combine detailed maps of human macro- and meso-scale vasculature measured with high-resolution MRI with maps of the micro-scale vasculature measured in human brain specimens with CLARITY-assisted microimaging. We will then link this anatomical information with dynamic models built from 2-photon microscopy performed in rodents where the changes in vessel diameter, blood flow and oxygenation can be measured directly in each vessel type across all stages of the vascular hierarchy. We hypothesize that newly introduced models of hemo- and vaso-dynamics built from 2-photon microscopy, linked with a detailed micro- and macroscopically mapped human microvascular anatomy, can be exploited to improve the spatial and temporal specificity of human fMRI. To supply human vasculature reconstructions to our models, we propose a two-scale approach. We first advance 7 Tesla MR Angiography (MRA) techniques to image the pial vascular network as well as intracortical vessels and vascular layers of the cerebral cortex to achieve a mesoscopic model. To form the micron-scale model of vasculature at the capillary level, we will use the CLARITY technique to image the full vascular tree (from arterioles through capillaries to venules) in human primary visual cortex. To predict vasodynamic changes driven by neuronal activation, we will adapt a model derived from dynamic in vivo 2-photon microscopy of vessel diameters in rodents to human microvascular anatomy. To adapt this to human microvasculature requires a careful multi-stage transferal. First we will measure bulk changes in microvessel diameter, a.k.a. cerebral blood volume (CBV), across multiple levels of the vascular hierarchy and confirm that the model can predict the CBV-fMRI signal. The CBV-fMRI signal is used because it is a vasodynamic signal directly reflecting vessel diameter changes occurring alongside local neuronal activity (rather than the subsequent hemodynamic changes). After performing this validation we will build a dynamic model of the microvascular tree in human cortex based on our vascular reconstruction, and again measure CBV-fMRI changes across multiple levels of the vascular hierarchy. We will finally test the ability of this model to improve the neuronal specificity of fMRI by imaging the functional architecture in human visual cortex. This model will also enable the formulation and testing of hypotheses about the discriminability of fMRI responses elicited from nearby neuronal populations, and guide development of future advanced acquisition technologies.
项目总结/摘要 所有的fMRI信号都有血管起源,这被认为是精确测量的主要限制。 当使用血液动力学功能对比如BOLD时,神经元激活的时空定位。 然而,最近使用强大的超高分辨率光学成像技术取得的重大发现 挑战了这种信念。不幸的是,这些措施需要侵入性程序,因此不能 在人类身上进行。我们的目标是将从这些侵入性研究中获得的知识转移到口译中 人类功能磁共振成像数据,以帮助功能磁共振成像发挥其全部潜力。在本提案中,我们计划将联合收割机的详细内容 用高分辨率MRI测量的人体宏观和中尺度血管图, 微尺度脉管系统测量人脑标本与磁共振辅助显微成像。我们将 然后将这些解剖信息与啮齿动物双光子显微镜建立的动态模型联系起来, 其中可以直接在每个血管中测量血管直径、血流和氧合的变化 在血管层次的各个阶段都有。我们假设,新引入的模型, 血管动力学建立从2光子显微镜,与详细的微观和宏观映射 人类微血管解剖学,可以利用,以提高人类功能磁共振成像的空间和时间特异性。 为了给我们的模型提供人体血管重建,我们提出了一种双尺度方法。我们首先 先进的7特斯拉磁共振血管造影(MRA)技术,以成像软脑膜血管网络以及皮质内 血管和大脑皮层的血管层,以实现介观模型。形成微米尺度的 在毛细血管水平的脉管系统模型中,我们将使用PERFORITY技术对完整的血管树进行成像 (from微动脉通过毛细血管到微静脉)。 为了预测由神经元激活驱动的血管动力学变化,我们将采用来自以下的模型 啮齿类动物血管直径的动态体内双光子显微镜检查与人类微血管解剖学。到 使其适应人类微脉管系统需要仔细的多阶段转移。首先我们测量体积 微血管直径的变化,也称为脑血容量(CBV),跨血管的多个水平 并证实该模型可以预测CBV-fMRI信号。使用CBV-fMRI信号是因为它 是直接反映伴随局部神经元活动发生的血管直径变化的血管动力学信号 (而不是随后的血液动力学变化)。执行此验证后,我们将构建一个动态 基于我们的血管重建的人类皮层微血管树模型,并再次测量 CBV-fMRI在血管层次的多个水平上发生变化。我们将最终测试这个模型的能力 通过对人类视觉皮层的功能结构成像,提高fMRI的神经元特异性。这 该模型还将使有关功能磁共振成像反应的可辨别性的假设的形成和检验成为可能 从附近的神经元群体引出,并指导未来先进采集技术的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Rizzo Polimeni其他文献

Jonathan Rizzo Polimeni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Rizzo Polimeni', 18)}}的其他基金

High-Performance Gradient Coil for 7 Tesla MRI
用于 7 特斯拉 MRI 的高性能梯度线圈
  • 批准号:
    10630533
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
fMRI Technologies for Imaging at the Limit of Biological Spatiotemporal Resolution: Administrative Supplement
用于生物时空分辨率极限成像的 fMRI 技术:行政补充
  • 批准号:
    10833383
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
  • 批准号:
    10643880
  • 财政年份:
    2021
  • 资助金额:
    $ 93.42万
  • 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
  • 批准号:
    10482354
  • 财政年份:
    2021
  • 资助金额:
    $ 93.42万
  • 项目类别:
CRCNS: Computational Modeling of Microvascular Effects in Cortical Laminar fMRI
CRCNS:皮质层状功能磁共振成像微血管效应的计算模型
  • 批准号:
    10398277
  • 财政年份:
    2021
  • 资助金额:
    $ 93.42万
  • 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics: Administrative Supplement
通过微血管动力学建模和成像改善人类功能磁共振成像:行政补充
  • 批准号:
    10179989
  • 财政年份:
    2016
  • 资助金额:
    $ 93.42万
  • 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
  • 批准号:
    9205860
  • 财政年份:
    2016
  • 资助金额:
    $ 93.42万
  • 项目类别:
Improving Human fMRI through Modeling and Imaging Microvascular Dynamics
通过微血管动力学建模和成像改善人类功能磁共振成像
  • 批准号:
    9974595
  • 财政年份:
    2016
  • 资助金额:
    $ 93.42万
  • 项目类别:
Fast MRI at the Limit of Biological Temporal Resolution
生物时间分辨率极限的快速 MRI
  • 批准号:
    9428443
  • 财政年份:
    2015
  • 资助金额:
    $ 93.42万
  • 项目类别:
fMRI Technologies for Imaging at the Limit of Biological Spatiotemporal Resolution
生物时空分辨率极限成像的 fMRI 技术
  • 批准号:
    10382317
  • 财政年份:
    2015
  • 资助金额:
    $ 93.42万
  • 项目类别:

相似海外基金

ImproviNg rEnal outcomes following coronary angiograPhy and/or percuTaneoUs coroNary intErventions: a pragmatic, adaptive, patient-oriented randomized controlled trial
改善冠状动脉造影和/或经皮冠状动脉介入治疗后的肾脏结局:一项务实、适应性、以患者为导向的随机对照试验
  • 批准号:
    478732
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
    Operating Grants
SBIR Phase II: Novel size-changing, gadolinium-free contrast agent for magnetic resonance angiography
SBIR II 期:用于磁共振血管造影的新型尺寸变化、无钆造影剂
  • 批准号:
    2322379
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
    Cooperative Agreement
Neonatal Optical Coherence Tomography Angiography to Assess the Effects of Postnatal Exposures on Retinal Development and Predict Neurodevelopmental Outcomes
新生儿光学相干断层扫描血管造影评估产后暴露对视网膜发育的影响并预测神经发育结果
  • 批准号:
    10588086
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
  • 批准号:
    10602275
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
Highly Accelerated Magnetic Resonance Angiography using Deep Learning
使用深度学习的高加速磁共振血管造影
  • 批准号:
    2886357
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
    Studentship
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of a new diagnostic method for coronary artery disease using automated image analysis with postmortem coronary angiography CT
使用死后冠状动脉造影 CT 自动图像分析开发冠状动脉疾病的新诊断方法
  • 批准号:
    23K19795
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Novel ultrahigh speed swept source OCT angiography methods in diabetic retinopathy
糖尿病视网膜病变的新型超高速扫源 OCT 血管造影方法
  • 批准号:
    10656644
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 93.42万
  • 项目类别:
SCH: A physics-informed machine learning approach to dynamic blood flow analysis from static subtraction computed tomographic angiography imaging
SCH:一种基于物理的机器学习方法,用于从静态减影计算机断层血管造影成像中进行动态血流分析
  • 批准号:
    2205265
  • 财政年份:
    2022
  • 资助金额:
    $ 93.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了