Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS

连接艾滋病毒/艾滋病的统计推断和机制网络模型

基本信息

  • 批准号:
    10179312
  • 负责人:
  • 金额:
    $ 55.43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-02 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Network models are used to investigate the spread of HIV/AIDS, but rather than assuming that the members of a population of interest are fully mixed, the network approach enables individual-level specification of contact patterns by considering the structure of connections among the members of the population. By representing individuals as nodes and contacts between pairs of individuals as edges, this network depiction enables identification of individuals who drive the epidemic, allows for accurate assessment of study power in cluster- randomized trials, and makes it possible to evaluate the impact of interventions on the individuals themselves, their partners, and the broader network. There are currently two major mathematical paradigms to the modeling of networks: the statistical approach and the mechanistic approach. In the statistical approach, one specifies a model that states the likelihood of observing a given network, whereas in the mechanistic approach one specifies a set of domain-specific mechanistic rules at the level of individual nodes, the actors in the network, that are used to evolve the network over time. Given that mechanistic models directly model individual-level behaviors – modification of which is the foundation of most prevention measures – they are a natural fit for infectious diseases. Another attractive feature of mechanistic models is their scalability as they can be implemented for networks consisting of thousands or even millions of nodes, making it possible to simulate population-wide implementation of interventions. Lack of statistical methods for calibrating these models to empirical data has however impeded their use in real-world settings, a limitation that stems from the fact that there are typically no closed-form likelihood functions available for these models due the exponential increase in the number of ways, as a function of network size, of arriving at a given observed network. We propose to overcome this gap by advancing inferential and model selection methods for mechanistic network models, and by developing a framework for investigating their similarities with statistical network models. We base our approach on approximate Bayesian computation (ABC), a family of methods developed specifically for settings where likelihood functions are intractable or unavailable. Our specific aims are the following. Aim 1: To develop a statistically principled framework for estimating parameter values and their uncertainty for mechanistic network models. Aim 2: To develop a statistically principled method for model choice between two competing mechanistic network models and estimating the uncertainty surrounding this choice. Aim 3: To establish a framework for mapping mechanistic network models to statistical models. We also propose to implement these methods in open source software, using a combination of Python and C/C++, to facilitate their dissemination and adoption. We believe that the research proposed here can help harness mechanistic network models – and with that leverage some of the insights developed in the network science community over the past decade and more – to help eradicate this disease.
网络模型被用来调查艾滋病毒/艾滋病的传播,而不是假设网络的成员 感兴趣的人群完全混合,网络方法可以实现接触的个人级别规范 通过考虑人口成员之间的联系结构来确定模式。通过表示 个体作为节点,个体对之间的联系作为边,这种网络描述使得 识别推动流行病的个人,可以准确评估集群中的研究能力, 随机试验,并有可能评估干预措施对个人本身的影响, 他们的合作伙伴和更广泛的网络。目前有两种主要的数学范式, 网络建模:统计方法和机械方法。在统计方法中,1 指定一个模型,该模型说明观察给定网络的可能性,而在机械方法中, 一个是在单个节点的级别上指定一组特定于域的机械规则, 网络,用于随着时间的推移发展网络。假设机械模型直接模拟 个人层面的行为-修改是大多数预防措施的基础-他们是一个 天生适合传染病机械模型的另一个吸引人的特征是它们的可伸缩性,因为它们 可以在由数千甚至数百万个节点组成的网络中实现, 模拟在全人口范围内实施干预措施。缺乏统计方法来校准这些 然而,经验数据的模型阻碍了它们在现实世界中的使用,这一限制源于 事实上,通常没有封闭形式的似然函数可用于这些模型,由于指数 作为网络大小的函数,到达给定的观察网络的方式的数量的增加。我们 我建议通过改进机械网络的推理和模型选择方法来克服这一差距 模型,并通过开发一个框架,调查其与统计网络模型的相似性。我们 我们的方法基于近似贝叶斯计算(ABC),这是一种专门开发的方法, 用于似然函数难以处理或不可用的设置。我们的具体目标如下。目标1: 制定一个统计学原则框架,用于估计参数值及其不确定性, 机械网络模型目标2:开发一种统计学原理方法,用于两个模型之间的模型选择 竞争机制网络模型和估计围绕这个选择的不确定性。目标3: 建立一个将机械网络模型映射到统计模型的框架。我们亦建议 在开源软件中实现这些方法,使用Python和C/C++的组合, 传播和采纳。我们相信,这里提出的研究可以帮助利用机械 网络模型-并利用网络科学界开发的一些见解 在过去的十多年里,帮助根除这种疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jukka-Pekka Onnela其他文献

Jukka-Pekka Onnela的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jukka-Pekka Onnela', 18)}}的其他基金

Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    10651874
  • 财政年份:
    2019
  • 资助金额:
    $ 55.43万
  • 项目类别:
Passive Data to Improve Outcomes in Advanced Cancer
被动数据可改善晚期癌症的治疗结果
  • 批准号:
    9900874
  • 财政年份:
    2019
  • 资助金额:
    $ 55.43万
  • 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    10488636
  • 财政年份:
    2019
  • 资助金额:
    $ 55.43万
  • 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    9817000
  • 财政年份:
    2019
  • 资助金额:
    $ 55.43万
  • 项目类别:
Using mobile phones for social and behavioral sensing of mood disorder patients
使用手机对情绪障碍患者进行社交和行为感知
  • 批准号:
    8571083
  • 财政年份:
    2013
  • 资助金额:
    $ 55.43万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了