Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS

连接艾滋病毒/艾滋病的统计推断和机制网络模型

基本信息

  • 批准号:
    10488636
  • 负责人:
  • 金额:
    $ 54.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-02 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Network models are used to investigate the spread of HIV/AIDS, but rather than assuming that the members of a population of interest are fully mixed, the network approach enables individual-level specification of contact patterns by considering the structure of connections among the members of the population. By representing individuals as nodes and contacts between pairs of individuals as edges, this network depiction enables identification of individuals who drive the epidemic, allows for accurate assessment of study power in cluster- randomized trials, and makes it possible to evaluate the impact of interventions on the individuals themselves, their partners, and the broader network. There are currently two major mathematical paradigms to the modeling of networks: the statistical approach and the mechanistic approach. In the statistical approach, one specifies a model that states the likelihood of observing a given network, whereas in the mechanistic approach one specifies a set of domain-specific mechanistic rules at the level of individual nodes, the actors in the network, that are used to evolve the network over time. Given that mechanistic models directly model individual-level behaviors – modification of which is the foundation of most prevention measures – they are a natural fit for infectious diseases. Another attractive feature of mechanistic models is their scalability as they can be implemented for networks consisting of thousands or even millions of nodes, making it possible to simulate population-wide implementation of interventions. Lack of statistical methods for calibrating these models to empirical data has however impeded their use in real-world settings, a limitation that stems from the fact that there are typically no closed-form likelihood functions available for these models due the exponential increase in the number of ways, as a function of network size, of arriving at a given observed network. We propose to overcome this gap by advancing inferential and model selection methods for mechanistic network models, and by developing a framework for investigating their similarities with statistical network models. We base our approach on approximate Bayesian computation (ABC), a family of methods developed specifically for settings where likelihood functions are intractable or unavailable. Our specific aims are the following. Aim 1: To develop a statistically principled framework for estimating parameter values and their uncertainty for mechanistic network models. Aim 2: To develop a statistically principled method for model choice between two competing mechanistic network models and estimating the uncertainty surrounding this choice. Aim 3: To establish a framework for mapping mechanistic network models to statistical models. We also propose to implement these methods in open source software, using a combination of Python and C/C++, to facilitate their dissemination and adoption. We believe that the research proposed here can help harness mechanistic network models – and with that leverage some of the insights developed in the network science community over the past decade and more – to help eradicate this disease.
网络模型被用来调查艾滋病毒/艾滋病的传播,但不是假设 感兴趣的人群完全混合,网络方法支持个人级别的联系人指定 通过考虑人口成员之间的联系结构来确定模式。通过代表 作为节点的个体和作为边的个体对之间的联系,这种网络描述使得 识别推动疫情的个人,允许准确评估集群中的研究能力- 随机试验,并使评估干预措施对个体本身的影响成为可能, 他们的合作伙伴以及更广泛的网络。目前有两种主要的数学范例 网络建模:统计方法和机械方法。在统计方法中,1 指定一个模型,该模型说明观察给定网络的可能性,而在机械论方法中 一种是在单个节点级别指定一组特定于域的机制规则, 网络,用于随着时间的推移发展网络。假设机械模型直接建模 个人层面的行为--对其进行修改是大多数预防措施的基础--是一种 天生适合传染病。机械论模型的另一个吸引人的特点是其可扩展性,因为它们 可以对由数千甚至数百万个节点组成的网络实施,从而有可能 模拟全人群实施干预措施。缺乏校准这些数据的统计方法 然而,经验数据的模型阻碍了它们在现实世界环境中的使用,这一限制源于 通常没有闭合形式的似然函数可用于这些模型的事实是由于指数 作为网络规模的函数,到达给定观察到的网络的方式的数量增加。我们 提出通过改进机械网络的推理和模型选择方法来克服这一差距 模型,并开发了一个框架,用于研究它们与统计网络模型的相似性。我们 我们的方法基于近似贝叶斯计算(ABC),这是专门开发的一系列方法 用于似然函数难以处理或不可用的设置。我们的具体目标如下。目标1: 为估计参数值及其不确定度制定一个统计原则性框架 机械式网络模型。目的2:建立一种统计原则性的模型选择方法 竞争机械式网络模型,并估计围绕此选择的不确定性。目标3:实现 建立一个将机械网络模型映射到统计模型的框架。我们还建议 在开放源码软件中实现这些方法,结合使用Python和C/C++,以简化它们的 传播和采用。我们相信,这里提出的研究可以帮助驾驭机械论 网络模型-并利用网络科学界开发的一些见解 在过去的十多年里--帮助根除这种疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jukka-Pekka Onnela其他文献

Jukka-Pekka Onnela的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jukka-Pekka Onnela', 18)}}的其他基金

Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    10651874
  • 财政年份:
    2019
  • 资助金额:
    $ 54.95万
  • 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    10179312
  • 财政年份:
    2019
  • 资助金额:
    $ 54.95万
  • 项目类别:
Passive Data to Improve Outcomes in Advanced Cancer
被动数据可改善晚期癌症的治疗结果
  • 批准号:
    9900874
  • 财政年份:
    2019
  • 资助金额:
    $ 54.95万
  • 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    9817000
  • 财政年份:
    2019
  • 资助金额:
    $ 54.95万
  • 项目类别:
Using mobile phones for social and behavioral sensing of mood disorder patients
使用手机对情绪障碍患者进行社交和行为感知
  • 批准号:
    8571083
  • 财政年份:
    2013
  • 资助金额:
    $ 54.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了