Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS

连接艾滋病毒/艾滋病的统计推断和机制网络模型

基本信息

  • 批准号:
    10651874
  • 负责人:
  • 金额:
    $ 42.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-02 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Network models are used to investigate the spread of HIV/AIDS, but rather than assuming that the members of a population of interest are fully mixed, the network approach enables individual-level specification of contact patterns by considering the structure of connections among the members of the population. By representing individuals as nodes and contacts between pairs of individuals as edges, this network depiction enables identification of individuals who drive the epidemic, allows for accurate assessment of study power in cluster- randomized trials, and makes it possible to evaluate the impact of interventions on the individuals themselves, their partners, and the broader network. There are currently two major mathematical paradigms to the modeling of networks: the statistical approach and the mechanistic approach. In the statistical approach, one specifies a model that states the likelihood of observing a given network, whereas in the mechanistic approach one specifies a set of domain-specific mechanistic rules at the level of individual nodes, the actors in the network, that are used to evolve the network over time. Given that mechanistic models directly model individual-level behaviors – modification of which is the foundation of most prevention measures – they are a natural fit for infectious diseases. Another attractive feature of mechanistic models is their scalability as they can be implemented for networks consisting of thousands or even millions of nodes, making it possible to simulate population-wide implementation of interventions. Lack of statistical methods for calibrating these models to empirical data has however impeded their use in real-world settings, a limitation that stems from the fact that there are typically no closed-form likelihood functions available for these models due the exponential increase in the number of ways, as a function of network size, of arriving at a given observed network. We propose to overcome this gap by advancing inferential and model selection methods for mechanistic network models, and by developing a framework for investigating their similarities with statistical network models. We base our approach on approximate Bayesian computation (ABC), a family of methods developed specifically for settings where likelihood functions are intractable or unavailable. Our specific aims are the following. Aim 1: To develop a statistically principled framework for estimating parameter values and their uncertainty for mechanistic network models. Aim 2: To develop a statistically principled method for model choice between two competing mechanistic network models and estimating the uncertainty surrounding this choice. Aim 3: To establish a framework for mapping mechanistic network models to statistical models. We also propose to implement these methods in open source software, using a combination of Python and C/C++, to facilitate their dissemination and adoption. We believe that the research proposed here can help harness mechanistic network models – and with that leverage some of the insights developed in the network science community over the past decade and more – to help eradicate this disease.
网络模型被用来研究HIV/AIDS的传播,而不是假设

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Framework for assessing and easing global COVID-19 travel restrictions.
  • DOI:
    10.1038/s41598-022-10678-y
  • 发表时间:
    2022-04-28
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Thien-Minh Le;Raynal, Louis;Talbot, Octavious;Hambridge, Hali;Drovandi, Christopher;Mira, Antonietta;Mengersen, Kerrie;Onnela, Jukka-Pekka
  • 通讯作者:
    Onnela, Jukka-Pekka
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jukka-Pekka Onnela其他文献

Jukka-Pekka Onnela的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jukka-Pekka Onnela', 18)}}的其他基金

Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    10179312
  • 财政年份:
    2019
  • 资助金额:
    $ 42.1万
  • 项目类别:
Passive Data to Improve Outcomes in Advanced Cancer
被动数据可改善晚期癌症的治疗结果
  • 批准号:
    9900874
  • 财政年份:
    2019
  • 资助金额:
    $ 42.1万
  • 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    10488636
  • 财政年份:
    2019
  • 资助金额:
    $ 42.1万
  • 项目类别:
Bridging Statistical Inference and Mechanistic Network Models for HIV/AIDS
连接艾滋病毒/艾滋病的统计推断和机制网络模型
  • 批准号:
    9817000
  • 财政年份:
    2019
  • 资助金额:
    $ 42.1万
  • 项目类别:
Using mobile phones for social and behavioral sensing of mood disorder patients
使用手机对情绪障碍患者进行社交和行为感知
  • 批准号:
    8571083
  • 财政年份:
    2013
  • 资助金额:
    $ 42.1万
  • 项目类别:

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
  • 批准号:
    24K16436
  • 财政年份:
    2024
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
  • 批准号:
    24K16488
  • 财政年份:
    2024
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 42.1万
  • 项目类别:
    EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
  • 批准号:
    24K20973
  • 财政年份:
    2024
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 42.1万
  • 项目类别:
    EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
  • 批准号:
    10075502
  • 财政年份:
    2023
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
  • 批准号:
    10089082
  • 财政年份:
    2023
  • 资助金额:
    $ 42.1万
  • 项目类别:
    EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
  • 批准号:
    481560
  • 财政年份:
    2023
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
  • 批准号:
    2321091
  • 财政年份:
    2023
  • 资助金额:
    $ 42.1万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了