Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach

弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法

基本信息

  • 批准号:
    10186321
  • 负责人:
  • 金额:
    $ 53.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

1 Project Summary 2 3 The overall goal of this project is to develop accurate and reliable prediction tools and pharmacological targets 4 for the prevention of rupture of intracranial aneurysms (IAs). Abnormal hemodynamic stress such as 5 impingement flow with high wall shear and oscillating flow with low wall shear, is intimately linked with the growth 6 and rupture of IAs. However, detailed mechanisms underlying weak IA walls are not yet defined due to (1) the 7 absence of technologies for profiling the spatial distribution of gene expression of endothelial cells (ECs) induced 8 by the complex hemodynamic flow stressors created in IAs, (2) difficulties in collecting sequential clinical images 9 of growing IAs and acquiring human IA tissue samples to validate biologic mechanisms, and (3) the absence of 10 technologies allowing integration of the data from 3D multimodal techniques. To overcome these obstacles, we 11 have built a strong, multidisciplinary team and created a new experimental system that bridges human samples, 12 imaging, and dynamic modeling platforms. In this project, we challenge two fundamental questions regarding 13 hemodynamic stress and induced responses within the IAs. First, does complex abnormal hemodynamic stress 14 within human IAs induce abnormal regulation of EC signaling pathways? Second, what signaling pathways in 15 EC link unstable wall remodeling during IA growth and rupture? To address these questions, we have pioneered 16 a 3D Live EC Aneurysmal Flow Simulator (3D LEAFS) for profiling the spatial distribution of EC responses to 17 complex hemodynamic flow stress created in patient-specific IAs. Preliminary studies demonstrate that abnormal 18 flow in IAs induces abnormal EC morphology, cellular dysfunction and inflammation, and increased permeability. 19 We have developed an extensive database of clinical images of growing IAs and also tissue samples, exploiting 20 integrated flow analysis and 3D histological imaging of human IA tissue scanned with micro-CT and multiphoton 21 microscopy. With this database, we have linked abnormal flow with IAs to growth, wall thinning and weak wall 22 remodeling leading to rupture. By combining these state-of-the-art technologies, we propose to examine 23 fundamental impact of abnormal flow stress on ECs, and identify relationships between EC pathophysiological 24 responses and wall changes leading to fragile walls, growth and rupture. The proposed research is innovative 25 because this will be the first research to answer the above questions by utilizing multimodalities including 26 longitudinal follow-up images, surgical video, micro-CT, multiphoton microscopy, in vitro 3D endothelialized flow 27 simulator, and flow analysis for development of a pipeline for linking flow-induced EC responses to pathologic 28 changes in human IA tissue. The specific aims of this project are: 1) determine the EC signaling pathways 29 associated with unstable wall remodeling, 2) correlate pathological EC responses with IA growth, and 3) 30 determine the EC responses evoked by several characteristic abnormal hemodynamic flow conditions. The 31 proposed research will enhance development of precision medicine strategies that leverage diagnostic imaging 32 with risk prediction and translational therapies.
1项目概述

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Naoki Kaneko其他文献

Naoki Kaneko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Naoki Kaneko', 18)}}的其他基金

Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
  • 批准号:
    10610461
  • 财政年份:
    2021
  • 资助金额:
    $ 53.03万
  • 项目类别:
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
  • 批准号:
    10437826
  • 财政年份:
    2021
  • 资助金额:
    $ 53.03万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 53.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 53.03万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 53.03万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 53.03万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 53.03万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 53.03万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 53.03万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 53.03万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 53.03万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 53.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了