Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
基本信息
- 批准号:10610461
- 负责人:
- 金额:$ 48.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAbnormal Endothelial CellAddressAffectAneurysmAngiographyAnimal ModelAreaBiologicalBiological MarkersBullaCell ShapeCellular MorphologyCharacteristicsClinicalCollaborationsComplexDataData SetDatabasesDevelopmentDiagnostic ImagingEndothelial CellsEndotheliumExhibitsFunctional disorderGene ExpressionGoalsGrowthHarvestHumanImageIn VitroInflammationIntracranial AneurysmInvestigationKnowledgeLinkLiquid substanceMapsMediatingMedicalMethodsMicroscopicMicroscopyMicrosurgeryModelingMolecularMonitorMorbidity - disease rateOperative Surgical ProceduresPathologicPatientsPermeabilityPharmacotherapyPreventionRegulationReportingResearchRiskRisk FactorsRoleRuptureRuptured AneurysmSamplingScanningSignal PathwaySignal TransductionSourceSpatial DistributionSpecific qualifier valueStressSubarachnoid HemorrhageSurgical ClipsSystemTechniquesTechnologyTestingThinnessTimeTissue SampleTissuesUnnecessary SurgeryVascular Endothelial Cellcerebrovascularclinical databaseclinical imagingdata integrationfollow-uphemodynamicshigh riskhistological imagehuman imagingin vitro ModelinnovationmicroCTmortalitymulti-photonmultidisciplinarymultimodalitymultiphoton microscopynovelpharmacologicprecision medicinepredictive toolsradiological imagingresponserisk predictionsimulationstressortranslational therapeutics
项目摘要
1 Project Summary
2
3 The overall goal of this project is to develop accurate and reliable prediction tools and pharmacological targets
4 for the prevention of rupture of intracranial aneurysms (IAs). Abnormal hemodynamic stress such as
5 impingement flow with high wall shear and oscillating flow with low wall shear, is intimately linked with the growth
6 and rupture of IAs. However, detailed mechanisms underlying weak IA walls are not yet defined due to (1) the
7 absence of technologies for profiling the spatial distribution of gene expression of endothelial cells (ECs) induced
8 by the complex hemodynamic flow stressors created in IAs, (2) difficulties in collecting sequential clinical images
9 of growing IAs and acquiring human IA tissue samples to validate biologic mechanisms, and (3) the absence of
10 technologies allowing integration of the data from 3D multimodal techniques. To overcome these obstacles, we
11 have built a strong, multidisciplinary team and created a new experimental system that bridges human samples,
12 imaging, and dynamic modeling platforms. In this project, we challenge two fundamental questions regarding
13 hemodynamic stress and induced responses within the IAs. First, does complex abnormal hemodynamic stress
14 within human IAs induce abnormal regulation of EC signaling pathways? Second, what signaling pathways in
15 EC link unstable wall remodeling during IA growth and rupture? To address these questions, we have pioneered
16 a 3D Live EC Aneurysmal Flow Simulator (3D LEAFS) for profiling the spatial distribution of EC responses to
17 complex hemodynamic flow stress created in patient-specific IAs. Preliminary studies demonstrate that abnormal
18 flow in IAs induces abnormal EC morphology, cellular dysfunction and inflammation, and increased permeability.
19 We have developed an extensive database of clinical images of growing IAs and also tissue samples, exploiting
20 integrated flow analysis and 3D histological imaging of human IA tissue scanned with micro-CT and multiphoton
21 microscopy. With this database, we have linked abnormal flow with IAs to growth, wall thinning and weak wall
22 remodeling leading to rupture. By combining these state-of-the-art technologies, we propose to examine
23 fundamental impact of abnormal flow stress on ECs, and identify relationships between EC pathophysiological
24 responses and wall changes leading to fragile walls, growth and rupture. The proposed research is innovative
25 because this will be the first research to answer the above questions by utilizing multimodalities including
26 longitudinal follow-up images, surgical video, micro-CT, multiphoton microscopy, in vitro 3D endothelialized flow
27 simulator, and flow analysis for development of a pipeline for linking flow-induced EC responses to pathologic
28 changes in human IA tissue. The specific aims of this project are: 1) determine the EC signaling pathways
29 associated with unstable wall remodeling, 2) correlate pathological EC responses with IA growth, and 3)
30 determine the EC responses evoked by several characteristic abnormal hemodynamic flow conditions. The
31 proposed research will enhance development of precision medicine strategies that leverage diagnostic imaging
32 with risk prediction and translational therapies.
1项目概要
2
③本项目的总体目标是开发准确可靠的预测工具和药理靶点
4用于预防颅内动脉瘤(IA)破裂。异常血流动力学应激,如
5高壁面剪切的冲击流和低壁面剪切的振荡流与生长密切相关
6和IA的破裂。然而,由于以下原因,导致弱IA壁的详细机制尚未确定:(1)
7.缺乏用于分析诱导的内皮细胞(EC)基因表达的空间分布的技术
8例由颅内动脉内产生的复杂血流动力学压力源引起,(2)难以收集连续的临床图像
9)生长IA和获取人类IA组织样本以验证生物学机制,以及(3)缺乏
10种技术允许从3D多模态技术中整合数据。为了克服这些障碍,我们
11已经建立了一个强大的,多学科的团队,并创建了一个新的实验系统,连接人体样本,
12个成像和动态建模平台。在这个项目中,我们挑战两个基本问题,
13颅内动脉内的血流动力学应激和诱导反应。首先,复杂的异常血流动力学应激
14在人类IA诱导EC信号通路的异常调节?第二,什么样的信号通路,
15 EC连接IA生长和破裂期间的不稳定壁重塑?为了解决这些问题,我们开创了
16三维实时EC动脉瘤血流模拟器(3D LEAFS),用于分析EC响应的空间分布,
17例患者特定IA中产生的复杂血流动力学流动应力。初步研究表明,异常
IA中的18流动诱导异常EC形态、细胞功能障碍和炎症以及增加的渗透性。
19我们已经开发了一个广泛的临床图像数据库,其中包括正在生长的IA和组织样本,
20用微CT和多光子扫描的人IA组织的集成流动分析和3D组织学成像
21显微镜。利用这个数据库,我们将异常流动与IA与生长、壁变薄和弱壁联系起来
第22章导致死亡通过结合这些最先进的技术,我们建议检查
23异常流动应力对EC的基本影响,并确定EC病理生理学之间的关系
24个反应和壁变化导致脆弱的壁,生长和破裂。该研究具有创新性
25因为这将是第一个通过利用多种方式回答上述问题的研究,
26例纵向随访图像、手术视频、显微CT、多光子显微镜、体外3D内皮化血流
27模拟器,和流动分析,用于开发用于将流动诱导的EC反应与病理性EC反应联系起来的管道。
人体IA组织中的28处变化。本课题的具体目标是:1)确定EC信号通路
29例与不稳定的室壁重塑相关,2)病理性EC反应与IA生长相关,以及3)
30确定由几种特征性异常血流动力学流动条件诱发的EC响应。的
31项拟议的研究将促进利用诊断成像的精准医学战略的发展
32例进行了风险预测和转化治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Naoki Kaneko其他文献
Naoki Kaneko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Naoki Kaneko', 18)}}的其他基金
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
- 批准号:
10437826 - 财政年份:2021
- 资助金额:
$ 48.94万 - 项目类别:
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
- 批准号:
10186321 - 财政年份:2021
- 资助金额:
$ 48.94万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 48.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 48.94万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 48.94万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 48.94万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 48.94万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 48.94万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 48.94万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 48.94万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 48.94万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 48.94万 - 项目类别:
Standard Grant