Intraprocedure Model-Guided Electrophysiology
术中模型引导电生理学
基本信息
- 批准号:10186741
- 负责人:
- 金额:$ 51.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAblationAffectAnatomyAnimalsArrhythmiaAtrial FibrillationCardiac ablationCauterizeCessation of lifeCicatrixCollaborationsComplexComplicationComputer ModelsDetectionDevelopmentElectrophysiology (science)FutureGoalsHeartHeart AbnormalitiesIndividualInfarctionInterventionLesionLocationMagnetic Resonance ImagingMapsMethodologyMethodsModelingMorphologyMyocardiumNatureNecrosisNormal tissue morphologyPathway interactionsPatientsProceduresRecurrenceResolutionRiskRunningSiteSymptomsTechniquesTechnologyTimeTissuesUnited StatesUniversitiesUpdateVentricular Tachycardiabody systemelectrical propertyhemodynamicshigh resolution imagingimaging modalityimprovedimproved outcomenecrotic tissuenovel strategiespre-clinicalpredictive modelingsuccess
项目摘要
Atrial fibrillation (AF) and ventricular tachycardia (VT) affect millions of patients in the United States.
These arrhythmias can be cured with catheter ablation, but the arrhythmias often recur, and these recurrences
are generally due to reversible conduction block from incomplete ablation. The inability to confirm the presence
of completely ablated lesions in the desired locations is the major factor in the greater than 40% recurrence of
VT after ablation, and the greater than 30 % recurrence of AF after ablation. In addition, it is not possible with
current technology to adequately predict the pathways of VT through scar, which are the targets for ablation.
The overall goal of this project is to combine high resolution Magnetic Resonance Imaging (MRI) and
limited invasive mapping, with fast computational modeling, to predict arrhythmia circuits and targets for
ablation. This goal includes using this technology to update ablation targets during a procedure to allow for
identification and ablation of any remaining arrhythmogenic substrate as ablation is proceeding.
We hypothesize that computational modeling, optimized with high-resolution MRI, and limited invasive
mapping, can (1) aid in predicting the locations of arrhythmia circuits (2) aid in predicting the locations of critical
ablation targets, and (3) aid in assessing the completeness of ablation. Once validated, these enhanced
capabilities could help to dramatically improve the outcomes from complex ablations, become part of ablation
methods of the future, and become a platform for improving outcomes from other interventions.
We have already developed improved high resolution imaging methods that allow accurate differentiation
of infarct scar and border zone from normal tissue. This high resolution imaging may also allow for detection of
conducting channels that may be present in otherwise dense scar, and which may be a critical part of some
VT circuits. We are also pursuing limited invasive mapping as a means to detect the presence of late potentials
in scar to aid in the detection and/or verification of conducting channels, which may be difficult to identify with
current MRI methods. We will further improve high resolution imaging for input for a computational model that
along with the detection and/or confirmation of conduction channels from invasive mapping, will predict
arrhythmia circuit locations, and allow the fast and accurate determination of optimal targets for ablation. In
addition, since the model can be run in near real time, and since we can perform intra-procedure MRI, we will
also study the use of the computational model for predicting when additional ablation is needed to complete
the ablation of all arrhythmogenic substrate. Finally, we have developed imaging methods that differentiate
incompletely ablated (reversibly damaged) tissue from completely ablated (necrotic) tissue. If ablation of some
lesions is found to be incomplete during a procedure, additional ablation can be performed to complete the
ablation, and likely substantially reduce arrhythmia recurrences. This project is a collaboration between the
Johns Hopkins University (High Resolution MRI, invasive mapping), and Siemens (computational modeling).
在美国,房颤(AF)和室性心动过速(VT)影响着数百万患者。
这些心律失常可以通过导管消融治愈,但心律失常经常复发,这些复发
通常是由于不完全消融造成的可逆传导阻滞。无法确认是否存在
在所需位置完全消融的病变是超过40%的复发的主要因素
消融后室性心动过速,消融后房颤复发率大于30%。此外,这是不可能的
目前的技术可以充分预测VT通过SCAR的路径,而SCAR是消融的目标。
该项目的总体目标是将高分辨率磁共振成像(MRI)和
有限侵入性标测,通过快速计算建模,预测心律失常回路和靶点
消融。这一目标包括在手术过程中使用该技术更新消融目标,以允许
随着消融的进行,识别和消融任何剩余的致心律失常底物。
我们假设,通过高分辨率核磁共振优化的计算模型和有限的侵入性
标测可以(1)帮助预测心律失常回路的位置(2)帮助预测危重心律失常的位置
消融目标,以及(3)帮助评估消融的完整性。经过验证后,这些功能得到增强
能力可以帮助显著改善复杂消融的结果,成为消融的一部分
这是一种未来的方法,并成为改进其他干预措施成果的平台。
我们已经开发了改进的高分辨率成像方法,可以准确地区分
从正常组织中分离出梗死区和边缘区。这种高分辨率成像还可以检测到
传导通道可能存在于其他致密的疤痕中,并且可能是某些
VT电路。我们还在寻求有限的侵入性标测作为检测晚期潜伏期存在的一种手段。
以帮助检测和/或验证传导通道,其可能难以识别
目前的核磁共振检查方法。我们将进一步改进计算模型的输入的高分辨率成像
随着来自侵入性标测的传导通道的检测和/或确认,将预测
它能够快速、准确地确定最佳消融目标。在……里面
此外,由于模型可以近乎实时地运行,而且我们可以在过程中执行核磁共振,因此我们将
还要研究使用计算模型来预测何时需要额外消融才能完成
消融所有致心律失常的基质。最后,我们已经开发出区别于
完全消融(坏死)组织形成的不完全消融(可逆性损伤)组织。如果消融了一些
在手术过程中发现病变不完整时,可以进行额外的消融以完成
消融,并有可能大大减少心律失常的复发。这个项目是由
约翰霍普金斯大学(高分辨率磁共振成像,侵入性测绘)和西门子(计算建模)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HENRY R HALPERIN其他文献
HENRY R HALPERIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HENRY R HALPERIN', 18)}}的其他基金
A Multimodal Integrated System For Improved Cardiopulmonary Resuscitation
用于改善心肺复苏的多模式集成系统
- 批准号:
10705185 - 财政年份:2022
- 资助金额:
$ 51.6万 - 项目类别:
A Multimodal Integrated System For Improved Cardiopulmonary Resuscitation
用于改善心肺复苏的多模式集成系统
- 批准号:
10546620 - 财政年份:2022
- 资助金额:
$ 51.6万 - 项目类别:
The Hemodynamic and Metabolic Effects of Advanced Circulatory Support for Resuscitation
高级循环支持对复苏的血流动力学和代谢效应
- 批准号:
10097790 - 财政年份:2021
- 资助金额:
$ 51.6万 - 项目类别:
The Hemodynamic and Metabolic Effects of Advanced Circulatory Support for Resuscitation
高级循环支持对复苏的血流动力学和代谢效应
- 批准号:
10371978 - 财政年份:2021
- 资助金额:
$ 51.6万 - 项目类别:
The Hemodynamic and Metabolic Effects of Advanced Circulatory Support for Resuscitation
高级循环支持对复苏的血流动力学和代谢效应
- 批准号:
10557200 - 财政年份:2021
- 资助金额:
$ 51.6万 - 项目类别:
The Pathophysiology and Therapy of Pulseless Electrical Activity
无脉冲电活动的病理生理学和治疗
- 批准号:
9178083 - 财政年份:2014
- 资助金额:
$ 51.6万 - 项目类别:
The Pathophysiology and Therapy of Pulseless Electrical Activity
无脉电活动的病理生理学和治疗
- 批准号:
8800659 - 财政年份:2014
- 资助金额:
$ 51.6万 - 项目类别:
相似海外基金
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 51.6万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 51.6万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 51.6万 - 项目类别:
Standard Grant














{{item.name}}会员




