Intraprocedure Model-Guided Electrophysiology
术中模型引导电生理学
基本信息
- 批准号:9789881
- 负责人:
- 金额:$ 57.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAffectAnatomyAnimalsArrhythmiaAtrial FibrillationCardiac ablationCauterizeCessation of lifeCicatrixCollaborationsComplexComplicationComputer SimulationDetectionDevelopmentDimensionsElectrophysiology (science)FutureGoalsHeartHeart AbnormalitiesIndividualInfarctionInterventionLesionLocationMagnetic Resonance ImagingMapsMethodologyMethodsModelingMorphologyMyocardiumNatureNecrosisNormal tissue morphologyPathway interactionsPatientsProceduresRecurrenceResolutionRiskRunningSiteSymptomsTechniquesTechnologyTimeTissuesUnited StatesUniversitiesUpdateVentricular Tachycardiabody systemelectrical propertyhemodynamicshigh resolution imagingimaging modalityimprovedimproved outcomenovel strategiespre-clinicalpredictive modelingsuccess
项目摘要
Atrial fibrillation (AF) and ventricular tachycardia (VT) affect millions of patients in the United States.
These arrhythmias can be cured with catheter ablation, but the arrhythmias often recur, and these recurrences
are generally due to reversible conduction block from incomplete ablation. The inability to confirm the presence
of completely ablated lesions in the desired locations is the major factor in the greater than 40% recurrence of
VT after ablation, and the greater than 30 % recurrence of AF after ablation. In addition, it is not possible with
current technology to adequately predict the pathways of VT through scar, which are the targets for ablation.
The overall goal of this project is to combine high resolution Magnetic Resonance Imaging (MRI) and
limited invasive mapping, with fast computational modeling, to predict arrhythmia circuits and targets for
ablation. This goal includes using this technology to update ablation targets during a procedure to allow for
identification and ablation of any remaining arrhythmogenic substrate as ablation is proceeding.
We hypothesize that computational modeling, optimized with high-resolution MRI, and limited invasive
mapping, can (1) aid in predicting the locations of arrhythmia circuits (2) aid in predicting the locations of critical
ablation targets, and (3) aid in assessing the completeness of ablation. Once validated, these enhanced
capabilities could help to dramatically improve the outcomes from complex ablations, become part of ablation
methods of the future, and become a platform for improving outcomes from other interventions.
We have already developed improved high resolution imaging methods that allow accurate differentiation
of infarct scar and border zone from normal tissue. This high resolution imaging may also allow for detection of
conducting channels that may be present in otherwise dense scar, and which may be a critical part of some
VT circuits. We are also pursuing limited invasive mapping as a means to detect the presence of late potentials
in scar to aid in the detection and/or verification of conducting channels, which may be difficult to identify with
current MRI methods. We will further improve high resolution imaging for input for a computational model that
along with the detection and/or confirmation of conduction channels from invasive mapping, will predict
arrhythmia circuit locations, and allow the fast and accurate determination of optimal targets for ablation. In
addition, since the model can be run in near real time, and since we can perform intra-procedure MRI, we will
also study the use of the computational model for predicting when additional ablation is needed to complete
the ablation of all arrhythmogenic substrate. Finally, we have developed imaging methods that differentiate
incompletely ablated (reversibly damaged) tissue from completely ablated (necrotic) tissue. If ablation of some
lesions is found to be incomplete during a procedure, additional ablation can be performed to complete the
ablation, and likely substantially reduce arrhythmia recurrences. This project is a collaboration between the
Johns Hopkins University (High Resolution MRI, invasive mapping), and Siemens (computational modeling).
心房颤动(AF)和室性心动过速(VT)影响着美国数百万患者。
这些心律失常可以用导管消融术治愈,但心律失常经常复发,这些复发性心律失常
通常是由于不完全消融造成的可逆传导阻滞。无法确认
在所需位置完全消融的病变是大于40%的复发的主要因素,
消融后VT和消融后AF复发率大于30%。此外,不可能与
目前的技术足以预测室速通过疤痕的途径,这是消融的目标。
该项目的总体目标是将联合收割机高分辨率磁共振成像(MRI)与
有限的侵入性标测,快速计算建模,以预测心律失常电路和目标,
消融术该目标包括使用该技术在手术期间更新消融靶点,
识别和消融任何剩余的致肿瘤基质。
我们假设,计算建模,优化高分辨率MRI,和有限的侵入性
标测,可以(1)帮助预测心律失常电路的位置(2)帮助预测关键的心律失常电路的位置。
消融目标,和(3)帮助评估消融的完整性。一旦得到验证,
这些能力可以帮助显著改善复杂消融的结果,成为消融的一部分,
这是未来的方法,并成为改善其他干预措施成果的平台。
我们已经开发出改进的高分辨率成像方法,可以准确区分
梗死瘢痕和边缘区与正常组织的距离。这种高分辨率成像还可以允许检测
传导通道可能存在于其他致密的疤痕中,并且可能是某些疤痕的关键部分。
VT电路。我们也在寻求有限的侵入性标测作为检测晚电位存在的一种手段
以帮助检测和/或验证可能难以识别的导电通道
目前的MRI方法。我们将进一步改进高分辨率成像,用于计算模型的输入,
沿着来自侵入性标测的传导通道的检测和/或确认,将预测
心律失常电路的位置,并允许快速和准确地确定最佳目标的消融。在
此外,由于该模型可以接近真实的时间运行,并且由于我们可以执行术中MRI,因此我们将
还研究了使用计算模型预测何时需要完成额外的消融
所有致瘤基质消融。最后,我们开发了成像方法,
从完全消融(坏死)组织中消融不完全(可逆性损伤)组织。如果切除一些
如果在手术过程中发现病变不完整,则可以进行额外的消融以完成消融。
消融,并可能大大减少心律失常复发。这个项目是一个合作,
约翰霍普金斯大学(高分辨率MRI,侵入性标测)和西门子(计算建模)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HENRY R HALPERIN其他文献
HENRY R HALPERIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HENRY R HALPERIN', 18)}}的其他基金
A Multimodal Integrated System For Improved Cardiopulmonary Resuscitation
用于改善心肺复苏的多模式集成系统
- 批准号:
10705185 - 财政年份:2022
- 资助金额:
$ 57.99万 - 项目类别:
A Multimodal Integrated System For Improved Cardiopulmonary Resuscitation
用于改善心肺复苏的多模式集成系统
- 批准号:
10546620 - 财政年份:2022
- 资助金额:
$ 57.99万 - 项目类别:
The Hemodynamic and Metabolic Effects of Advanced Circulatory Support for Resuscitation
高级循环支持对复苏的血流动力学和代谢效应
- 批准号:
10097790 - 财政年份:2021
- 资助金额:
$ 57.99万 - 项目类别:
The Hemodynamic and Metabolic Effects of Advanced Circulatory Support for Resuscitation
高级循环支持对复苏的血流动力学和代谢效应
- 批准号:
10371978 - 财政年份:2021
- 资助金额:
$ 57.99万 - 项目类别:
The Hemodynamic and Metabolic Effects of Advanced Circulatory Support for Resuscitation
高级循环支持对复苏的血流动力学和代谢效应
- 批准号:
10557200 - 财政年份:2021
- 资助金额:
$ 57.99万 - 项目类别:
The Pathophysiology and Therapy of Pulseless Electrical Activity
无脉冲电活动的病理生理学和治疗
- 批准号:
9178083 - 财政年份:2014
- 资助金额:
$ 57.99万 - 项目类别:
The Pathophysiology and Therapy of Pulseless Electrical Activity
无脉电活动的病理生理学和治疗
- 批准号:
8800659 - 财政年份:2014
- 资助金额:
$ 57.99万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 57.99万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 57.99万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 57.99万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 57.99万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 57.99万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 57.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 57.99万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 57.99万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 57.99万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 57.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




