Personalized Life Expectancy to Encourage High Value Prostate Cancer Care

个性化预期寿命鼓励高价值前列腺癌护理

基本信息

项目摘要

As an integrated system with access to granular and longitudinal data, the Veterans Health administration (VHA) is ideally positioned to advance the understanding of the life expectancy, to improve prostate cancer screening strategies, and to generate models of personalized risk-adjusted life expectancy estimates to provide critical information to inform prostate cancer treatment decisions. Veterans receiving care in the Veterans Health Administration may have higher prostate cancer risk due to a family history, race, or exposure to toxins such as Agent Orange and burn pits. Prostate cancer presents a clinical, health policy, and population health challenge. Prostate cancer is the most common male cancer, presents in older men that may have additional medical conditions, and often follows an indolent course. It is estimated that 60% of all prostate cancer cases represent an “overdiagnosis” of clinically insignificant tumors. For prostate cancer patients, “overdiagnosis” refers to the diagnosis of a disease process that would otherwise not go on to cause symptoms or death. Similarly, “overtreatment” refers to the treatment of prostate cancers that would not otherwise go on to cause symptoms or death. Our objective is to leverage the power of the standardized electronic health record in the VHA to generate personalized risk-adjusted life expectancy estimates. We will use these estimates to provide critical information to inform prostate cancer screening and treatment medical decision-making. These efforts have the potential to deliver higher quality prostate cancer care, by treating patients most likely to benefit, and while avoiding futile treatment and minimizing treatment-related side effects. We will work to develop life expectancy estimates for all male veterans receiving care in the VHA and evaluate how a diagnosis of prostate cancer may modify these estimates. (Aim 1) Next, we use several approaches to generate personalized life expectancy estimates for patients with a diagnosis of prostate cancer. These estimates will use data from the electronic health record including age, race/ethnicity, prior medical claims, disease severity, exposure, health habits, pharmacy, and laboratory data for military beneficiaries receiving care in the VHA. (Aim 2) These estimates will include efforts to use machine learning approaches to generate the best-fitting model of overall survival. Finally, we will estimate the overdiagnosis and overtreatment of prostate cancer in the VHA using the general and personalized life expectancy estimates. (Aim 3)
作为一个可以访问精细和纵向数据的集成系统,退伍军人健康管理局 (VHA) 非常适合增进对预期寿命的了解,改善前列腺癌 筛选策略,并生成个性化风险调整预期寿命估计模型 提供重要信息以告知前列腺癌治疗决策。 由于以下原因,在退伍军人健康管理局接受护理的退伍军人可能患前列腺癌的风险较高 家族史、种族或接触过橙剂等毒素和烧伤坑。前列腺癌呈现出 临床、卫生政策和人口健康挑战。前列腺癌是最常见的男性癌症, 出现在可能患有其他疾病的老年男性中,并且通常呈惰性病程。它 据估计,所有前列腺癌病例中有 60% 是对临床上不显着的疾病的“过度诊断” 肿瘤。对于前列腺癌患者来说,“过度诊断”是指对疾病过程的诊断 否则不会继续导致症状或死亡。同样,“过度治疗”是指治疗 前列腺癌不会继续导致症状或死亡。 我们的目标是利用 VHA 中标准化电子健康记录的力量来生成 个性化的风险调整预期寿命估计。我们将使用这些估计来提供关键的 为前列腺癌筛查和治疗医疗决策提供信息。这些努力已经 通过治疗最有可能受益的患者,提供更高质量的前列腺癌护理的潜力,以及 同时避免无效的治疗并最大限度地减少与治疗相关的副作用。 我们将努力估算所有在 VHA 接受护理的男性退伍军人的预期寿命 评估前列腺癌的诊断如何改变这些估计。 (目标 1)接下来,我们使用几个 为前列腺诊断患者生成个性化预期寿命估计的方法 癌症。这些估计将使用电子健康记录中的数据,包括年龄、种族/民族、既往史 军事索赔、疾病严重程度、暴露、健康习惯、药房和实验室数据 在 VHA 接受护理的受益人。 (目标 2)这些估计将包括使用机器学习的努力 生成最佳拟合总体生存模型的方法。最后,我们将估计过度诊断 使用一般和个性化预期寿命对 VHA 中的前列腺癌进行过度治疗 估计。 (目标 3)

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Thomas Leppert其他文献

John Thomas Leppert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Thomas Leppert', 18)}}的其他基金

Defining Optimal Care for Urinary Stone Disease in the Veterans Health Administration
退伍军人健康管理局定义泌尿系结石的最佳护理
  • 批准号:
    10506323
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Defining Optimal Care for Urinary Stone Disease in the Veterans Health Administration
退伍军人健康管理局定义泌尿系结石的最佳护理
  • 批准号:
    10229348
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Personalized Life Expectancy to Encourage High Value Prostate Cancer Care
个性化预期寿命鼓励高价值前列腺癌护理
  • 批准号:
    9768237
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    7961124
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8720527
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8332341
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8142207
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8535737
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
  • 批准号:
    24K21025
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
  • 批准号:
    2346286
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
  • 批准号:
    DP240100300
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
  • 批准号:
    2348755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
  • 批准号:
    24K05127
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
  • 批准号:
    DP240101848
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
  • 批准号:
    10069843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
  • 批准号:
    10053966
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了