Personalized Life Expectancy to Encourage High Value Prostate Cancer Care

个性化预期寿命鼓励高价值前列腺癌护理

基本信息

项目摘要

As an integrated system with access to granular and longitudinal data, the Veterans Health administration (VHA) is ideally positioned to advance the understanding of the life expectancy, to improve prostate cancer screening strategies, and to generate models of personalized risk-adjusted life expectancy estimates to provide critical information to inform prostate cancer treatment decisions. Veterans receiving care in the Veterans Health Administration may have higher prostate cancer risk due to a family history, race, or exposure to toxins such as Agent Orange and burn pits. Prostate cancer presents a clinical, health policy, and population health challenge. Prostate cancer is the most common male cancer, presents in older men that may have additional medical conditions, and often follows an indolent course. It is estimated that 60% of all prostate cancer cases represent an “overdiagnosis” of clinically insignificant tumors. For prostate cancer patients, “overdiagnosis” refers to the diagnosis of a disease process that would otherwise not go on to cause symptoms or death. Similarly, “overtreatment” refers to the treatment of prostate cancers that would not otherwise go on to cause symptoms or death. Our objective is to leverage the power of the standardized electronic health record in the VHA to generate personalized risk-adjusted life expectancy estimates. We will use these estimates to provide critical information to inform prostate cancer screening and treatment medical decision-making. These efforts have the potential to deliver higher quality prostate cancer care, by treating patients most likely to benefit, and while avoiding futile treatment and minimizing treatment-related side effects. We will work to develop life expectancy estimates for all male veterans receiving care in the VHA and evaluate how a diagnosis of prostate cancer may modify these estimates. (Aim 1) Next, we use several approaches to generate personalized life expectancy estimates for patients with a diagnosis of prostate cancer. These estimates will use data from the electronic health record including age, race/ethnicity, prior medical claims, disease severity, exposure, health habits, pharmacy, and laboratory data for military beneficiaries receiving care in the VHA. (Aim 2) These estimates will include efforts to use machine learning approaches to generate the best-fitting model of overall survival. Finally, we will estimate the overdiagnosis and overtreatment of prostate cancer in the VHA using the general and personalized life expectancy estimates. (Aim 3)
作为一个可以访问粒度和纵向数据的集成系统,退伍军人健康管理局 (VHA)是理想的定位,以促进对预期寿命的理解,以改善前列腺癌, 筛查策略,并生成个性化的风险调整预期寿命估计模型, 提供重要信息,为前列腺癌治疗决策提供信息。 在退伍军人健康管理局接受护理的退伍军人可能有更高的前列腺癌风险, 家族史,种族,或接触毒素,如橙子剂和烧伤坑。前列腺癌呈现出 临床、卫生政策和人口健康挑战。前列腺癌是最常见的男性癌症, 在老年男性中出现,可能有其他医疗条件,并且通常遵循惰性过程。它 据估计,60%的前列腺癌病例代表了临床上无意义的“过度诊断”, 肿瘤的对于前列腺癌患者来说,“过度诊断”是指对疾病过程的诊断, 否则不会引起症状或死亡。同样,“过度治疗”是指治疗 前列腺癌,否则不会继续引起症状或死亡。 我们的目标是利用VHA中标准化电子健康记录的功能, 个性化的风险调整预期寿命估计。我们将利用这些估计提供关键的 前列腺癌筛查和治疗医疗决策的信息。这些努力 通过治疗最有可能受益的患者,提供更高质量的前列腺癌护理的潜力,以及 同时避免无效治疗并使治疗相关的副作用最小化。 我们将努力为所有在VHA接受护理的男性退伍军人制定预期寿命估计, 评估前列腺癌的诊断如何改变这些估计。(Aim 1)接下来,我们使用几个 为诊断为前列腺疾病的患者生成个性化预期寿命估计的方法 癌这些估计将使用来自电子健康记录的数据,包括年龄、人种/种族、既往 医疗索赔、疾病严重程度、暴露、健康习惯、药房和军事实验室数据 在VHA接受护理的受益人。(Aim 2)这些估计将包括使用机器学习的努力 方法来生成最佳拟合的总生存模型。最后,我们将估计过度诊断 VHA中使用一般和个性化预期寿命的前列腺癌过度治疗 估算(Aim第三章

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Thomas Leppert其他文献

John Thomas Leppert的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Thomas Leppert', 18)}}的其他基金

Defining Optimal Care for Urinary Stone Disease in the Veterans Health Administration
退伍军人健康管理局定义泌尿系结石的最佳护理
  • 批准号:
    10506323
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Defining Optimal Care for Urinary Stone Disease in the Veterans Health Administration
退伍军人健康管理局定义泌尿系结石的最佳护理
  • 批准号:
    10229348
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Personalized Life Expectancy to Encourage High Value Prostate Cancer Care
个性化预期寿命鼓励高价值前列腺癌护理
  • 批准号:
    10186501
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8720527
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    7961124
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8332341
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8142207
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Renal Morbidity Following Kidney Cancer Surgery
肾癌手术后的肾脏发病率
  • 批准号:
    8535737
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
  • 批准号:
    2403813
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
FightAMR: Novel global One Health surveillance approach to fight AMR using Artificial Intelligence and big data mining
FightAMR:利用人工智能和大数据挖掘对抗 AMR 的新型全球统一健康监测方法
  • 批准号:
    MR/Y034422/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Exploring Hotel Customer Experiences in Japan via Big Data and Large Language Model Analysis
通过大数据和大语言模型分析探索日本酒店客户体验
  • 批准号:
    24K21025
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Big Data-based Distributed Control using a Behavioural Systems Framework
使用行为系统框架的基于大数据的分布式控制
  • 批准号:
    DP240100300
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
CC* Networking Infrastructure: Enabling Big Science and Big Data Projects at the University of Massachusetts
CC* 网络基础设施:支持马萨诸塞大学的大科学和大数据项目
  • 批准号:
    2346286
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
REU Site: Online Interdisciplinary Big Data Analytics in Science and Engineering
REU 网站:科学与工程领域的在线跨学科大数据分析
  • 批准号:
    2348755
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Market Orientation, Big Data Analysis Capability, and Business Performance: The Moderating Role of Supplier Relationship, Big data Analysis Outscoring
市场导向、大数据分析能力与经营绩效:供应商关系的调节作用、大数据分析得分
  • 批准号:
    24K05127
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generative Visual Pre-training on Unlabelled Big Data
未标记大数据的生成视觉预训练
  • 批准号:
    DP240101848
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Projects
MEGASKILLS [MEthodology of Psycho-pedagogical, Big Data and Commercial Video GAmes procedures for the European SKILLS Agenda Implementation]
MEGASKILLS [欧洲技能议程实施的心理教育学、大数据和商业视频游戏程序的方法]
  • 批准号:
    10069843
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    EU-Funded
Improving NHS perimenopausal diagnosis and HRT prescription through AI, machine learning and big data
通过人工智能、机器学习和大数据改善 NHS 围绝经期诊断和 HRT 处方
  • 批准号:
    10053966
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了