Discovering the molecular genetic principles of cell type organization through neurobiology-guided computational analysis of single cell multi-omics data sets
通过神经生物学引导的单细胞多组学数据集计算分析发现细胞类型组织的分子遗传学原理
基本信息
- 批准号:10189902
- 负责人:
- 金额:$ 140.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATAC-seqAlgorithmsAnatomyArchitectureAreaBRAIN initiativeBiologicalBiologyBrainBrain regionCell ShapeCellsCensusesClassificationCommunicationComputer AnalysisDNAData SetDevelopmentDevelopmental BiologyDevelopmental ProcessDiseaseGene Expression ProfileGenesGeneticGenetic TranscriptionGlutamatesHumanJointsKnowledgeLearningLinkMethodologyMethodsMethylationMolecularMolecular GeneticsMultiomic DataNeurobiologyNeuronsNoiseOutputPatternPhenotypePhysiologicalPhysiological ProcessesPlant RootsPopulationPropertyRegulator GenesSchemeSeriesShapesSignal PathwaySignal TransductionStatistical MethodsStructure of molecular layer of cerebellar cortexSupervisionSynapsesSynaptic TransmissionSystemTaxonomyTestingWorkbasecell typecomparativedeep neural networkdevelopmental geneticsepigenomeepigenomicsfeature selectiongenetic informationgenetic signaturehigh dimensionalityimprovedinsightmethylomemultimodalitymultiple omicsmultitaskneural circuitneurodevelopmentneuropsychiatric disorderprogramsrelating to nervous systemsingle cell analysissupervised learningtooltranscription factortranscriptometranscriptomicsweb portal
项目摘要
ABSTRACT
Understanding the biological principles of cell type diversity and organization is necessary for deciphering
neural circuits underlying brain function. The recent rapid accumulation of single cell transcriptomic and
epigenomic data sets provides unprecedented opportunity to explore the molecular genetic basis of cell
type identity, diversity, and organization. However, analysis of multi-omics datasets have been largely driven
by statistic methods that typically do not engage the deep knowledge of neurobiology and developmental
biology. As such, most statistic methods do not distinguish technical noise and methodological biases from
biologically relevant signals and relationships, and have limited power in achieving biological discovery and
insight. Neurobiology guided feature selection based on inherent physiological and developmental
processes is essential to move beyond simple statistical clustering of molecular types towards achieving
multi-modal definition of neuron types and revealing their inherent relationships as a taxonomy. We have
discovered that transcriptional architectures of synaptic input/output (I/O) communication may underlie the
essence of cortical GABAergic neuron identity. We hypothesize that transcriptional architectures of synaptic
communication is a general defining feature for brain neuron types. We will test this hypothesis by
performing a series of supervised learning and feature selection analyses of publically available and
emerging single sc-transcriptomic data sets across brain areas and systems from the BRIAN Initiative Cell
Census Network (BICCN). We further hypothesize that cell type transcriptional signatures of synaptic
communication is orchestrated by well-defined gene regulatory programs rooted in epignomic landscape.
We will test this hypothesis by joint analysis of sc-transcriptome, ATACseq, and DNA methylome dataset of
the same cortical cell populations from BICCN to identify co-expressed gene signatures that reliably define
cell identity, focusing on signatures of synaptic communication. Based on transcriptomic and epigenomic
architecture of synaptic communication, we will further develop neurobiology guided feature selection
algorithms to improve and refine the current statistical clustering the cortical transcriptomic types. In
addition, we will generate web portal tools for automated classification of transcriptomic cell types. Our study
will establish a unified paradigm of neuronal cell type organization in which epignomic landscape configures
core gene regulatory programs to shape synaptic communication properties that define cardinal neuron
types. Together, this work will establish a molecular genetic framework for understanding neuronal diversity
and achieving a biological classification across brain areas and mammalian species.
摘要
了解细胞类型多样性和组织的生物学原理对于破译是必要的
大脑功能的神经回路。最近单细胞转录和转录水平的快速积累
表观基因组数据集为探索细胞的分子遗传学基础提供了前所未有的机会
类型身份、多样性和组织。然而,对多组学数据集的分析在很大程度上受到了推动
通过通常不涉及神经生物学和发育方面的深入知识的统计方法
生物学。因此,大多数统计方法不区分技术噪声和方法偏差
与生物相关的信号和关系,在实现生物发现和
洞察力。神经生物学引导的基于内在生理和发育的特征选择
过程对于超越简单的分子类型统计聚集性向实现
神经元类型的多模式定义,并揭示其作为一种分类的内在关系。我们有
发现突触输入/输出(I/O)通信的转录架构可能是
皮质GABA能神经元同一性的实质。我们假设突触的转录结构
交流是大脑神经元类型的一般定义特征。我们将通过以下方式验证这一假设
执行一系列监督学习和特征选择分析
来自Brian Initiative Cell的跨大脑区域和系统的新出现的单一sc-转录数据集
普查网络(BICCN)。我们进一步假设突触的细胞类型转录特征
交流是由根植于附着体景观的定义良好的基因调控程序来编排的。
我们将通过联合分析sc-转录组、ATACseq和DNA甲基组数据集来检验这一假设
来自BICCN的相同的皮质细胞群体,以确定可靠地定义
细胞识别,重点是突触交流的特征。基于转录组和表观基因组学
架构,我们将进一步发展神经生物学指导的特征选择
改进和细化了当前皮质转录类型的统计聚类算法。在……里面
此外,我们将生成用于转录细胞类型自动分类的门户网站工具。我们的研究
将建立统一的神经细胞类型组织范例,在该范例中,表观景观将被配置
核心基因调控程序,以塑造定义基本神经元的突触通信特性
类型。总之,这项工作将建立一个了解神经元多样性的分子遗传框架。
以及实现跨大脑区域和哺乳动物物种的生物分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Z JOSH HUANG其他文献
Z JOSH HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Z JOSH HUANG', 18)}}的其他基金
RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
- 批准号:
10655620 - 财政年份:2021
- 资助金额:
$ 140.14万 - 项目类别:
RNA-programmable cell type targeting and manipulation across vertebrate nervous systems
跨脊椎动物神经系统的 RNA 可编程细胞类型靶向和操作
- 批准号:
10350096 - 财政年份:2021
- 资助金额:
$ 140.14万 - 项目类别:
RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
- 批准号:
10483215 - 财政年份:2021
- 资助金额:
$ 140.14万 - 项目类别:
RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
- 批准号:
10260304 - 财政年份:2021
- 资助金额:
$ 140.14万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9977809 - 财政年份:2016
- 资助金额:
$ 140.14万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9320717 - 财政年份:2016
- 资助金额:
$ 140.14万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9754666 - 财政年份:2016
- 资助金额:
$ 140.14万 - 项目类别:
Neurolucida BrainMaker Imaging System
Neurolucida BrainMaker 成像系统
- 批准号:
9075950 - 财政年份:2016
- 资助金额:
$ 140.14万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9083947 - 财政年份:2016
- 资助金额:
$ 140.14万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
10319407 - 财政年份:2016
- 资助金额:
$ 140.14万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 140.14万 - 项目类别:
Continuing Grant














{{item.name}}会员




