RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
基本信息
- 批准号:10655620
- 负责人:
- 金额:$ 112.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-07 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAnatomyAnimalsBase PairingBiological ProcessBiologyBiomedical ResearchBiotechnologyBirdsBrainCell Culture SystemCell physiologyCellsCerebral cortexClinicalClustered Regularly Interspaced Short Palindromic RepeatsComplexDNADevicesDiseaseEngineeringEnhancersEnzymesEthical IssuesGenesGenetic TranscriptionGenomeHealthHumanIndustrializationLinkMacacaMedicineMethodsMolecular GeneticsMonitorMusNeuronsOrganOrganismPhysiologicalPopulationPrimatesRNARNA EditingRNA libraryRibonucleoproteinsRoleSomatic CellSpecimenSystemTechnologyTissue EngineeringTissuesValidationVisualizationcell typecombinatorialcostdesigndsRNA adenosine deaminasegenetic manipulationgenetic technologynew technologynext generationnovel strategiessensortranscriptomic profiling
项目摘要
Josh Huang Sept 6, 2020
RNA-programmable cell-type targeting, editing, and therapy
Abstract
Systematic identification and manipulation of cell types is necessary for dissecting mechanisms of biological
functions in health and disease. Although large-scale, single-cell transcriptome profiling now enables
identification of all major transcription-defined cell types in many organisms, easy and systematic experimental
access to all major cell populations is needed to physiologically and anatomically validate these statistical
“transcriptional clusters” as cell types and, more importantly, to interrogate their roles in tissue organization and
function. The difficulty of selectively manipulating cell types remains a critical barrier to such studies. Current
approaches to this problem mostly rely on germline DNA engineering, which is slow and expensive and poses
ethical issues, especially in humans and other primates. Cell-type transcriptional enhancers afford a non-
germline approach, but their identification and validation remain effort-intensive and costly. To overcome these
barriers, all of biomedical research urgently needs a novel approach to manipulate cell types in a way that is
specific, easy yet comprehensive, affordable, and generalizes across organs and species, akin to CRISPR-
based manipulation of genes. Here I propose to develop a paradigm-shifting technology that will enable RNA-
programmable cell-type targeting and manipulation based on the fundamental biology of RNA editing. To achieve
this breakthrough, I will harness a set of next-generation, multi-functional ribonucleoprotein devices, which can
detect the presence of specific RNAs in somatic cells and trigger the expression of effector genes for cell
visualization, monitoring, and manipulation. This method builds upon the universal RNA sensing and editing
system within all metazoan cells, centered around the editing enzyme adenosine deaminase acting on RNA
(ADAR). I term this method CellREADR (Cell access through RNA sensing by Endogenous ADAR). As
CellREADR leverages endogenous cellular machinery and is built with a single modular RNA molecule that
functions through Watson-Crick base pairing, it is highly specific, inherently programmable, fast, affordable, easy
to use, and widely applicable. I propose to build and optimize CellREADR devices in cell-culture systems and
validate the method in a highly complex organ - the brain - by targeting and manipulating a large set of neuronal
cell types in the mouse cerebral cortex. We will extend CellREADR across species by targeting cell types in ex
vivo human brain specimens, and in the macaque and avian brain. Further, we will design intersectional
strategies for targeting increasingly specific cell types, and combinatorial strategies for simultaneous and
differential manipulation of multiple cell types in a tissue. By linking cell-type RNA sensors to a variety of effector
genes that alter cell functions, ranging from ablation to subtle physiological modulation, we aim to edit cell
composition and function for next-generation tissue engineering. This technology will result in large arrays of
CellREADR libraries for targeting all major cell types across diverse species, akin to CRISPR-based gene editing
of diverse genomes. Thus, CellREADR will have a broad impact in basic biology, medicine, and biotechnology.
2020年9月6日
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Z JOSH HUANG其他文献
Z JOSH HUANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Z JOSH HUANG', 18)}}的其他基金
RNA-programmable cell type targeting and manipulation across vertebrate nervous systems
跨脊椎动物神经系统的 RNA 可编程细胞类型靶向和操作
- 批准号:
10350096 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
- 批准号:
10483215 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
Discovering the molecular genetic principles of cell type organization through neurobiology-guided computational analysis of single cell multi-omics data sets
通过神经生物学引导的单细胞多组学数据集计算分析发现细胞类型组织的分子遗传学原理
- 批准号:
10189902 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
RNA-programmable cell-type targeting, editing, and therapy
RNA 可编程细胞类型靶向、编辑和治疗
- 批准号:
10260304 - 财政年份:2021
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9977809 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9320717 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9754666 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Neurolucida BrainMaker Imaging System
Neurolucida BrainMaker 成像系统
- 批准号:
9075950 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
9083947 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
Transcriptome-based systematic discovery of GABAergic neurons in the neocortex
基于转录组的新皮质 GABA 能神经元的系统发现
- 批准号:
10319407 - 财政年份:2016
- 资助金额:
$ 112.7万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 112.7万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 112.7万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 112.7万 - 项目类别:
Studentship