Building a reinforcement learning tool for individually tailoring just-in-time adaptive interventions: Extending the reach of mHealth technology for improved weight loss outcomes
构建强化学习工具,用于个性化定制及时适应性干预措施:扩大移动医疗技术的覆盖范围,以改善减肥效果
基本信息
- 批准号:10195835
- 负责人:
- 金额:$ 41.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdultAffectAfrican AmericanBehaviorBehavior TherapyBehavioralBody Weight decreasedCancer BurdenCancer ControlCar PhoneCellular PhoneClinicalDataDevelopmentDietDiseaseEffectivenessEventFeasibility StudiesGoalsHealthHealth behaviorHispanicsIncidenceIndividualInterventionLatinxLeadLearningLinkMachine LearningMalignant NeoplasmsMediatingMethodologyMonitorObesityObesity associated diseaseOnline SystemsOutcomeOverweightOwnershipParticipantPatternPersonsPhysical activityPopulationPositive ReinforcementsPsychological reinforcementRandomizedRewardsRisk FactorsSamplingSpecific qualifier valueTechniquesTechnologyTestingTimeTravelUnited StatesUpdateWeightWeight maintenance regimenWorkadaptive interventionbasebehavior changecancer health disparitycancer preventioncancer typeclinically significantcostdigitaldigital healtheffective interventionefficacious interventionfitbitfollow-uphealth datahealth disparityimprovedinsightlearning algorithmlow socioeconomic statusmHealthmachine learning methodobesity riskprogramsracial and ethnicrandomized trialresponsesocioeconomicstime usetoolusabilityuser-friendlyweb-based toolweight loss intervention
项目摘要
Project Summary
Excess weight is associated with 13 types of cancer. These cancers disproportionately affect Black and Latinx
individuals, as well as those with lower socioeconomic status, because overweight and obesity incidence is
higher in these groups. Behavioral weight loss interventions are effective, but in-person interventions tend to
have low reach. As mobile phone ownership is increasing in the United States, mHealth technology holds
promise for reaching a larger population than in-person behavioral interventions. Furthermore, because they
travel with individuals and can collect digital information in real-time, mHealth tools make it possible to
intervene with individuals at the precise point when the interventions are needed with just-in-time adaptive
interventions (JITAIs). As currently implemented, mHealth JITAIs are adaptive in the sense that interventionists
can specify decision rules a priori that result in intervention messages that are triggered or tailored by certain
events. These experimenter-specified decision rules are generally based upon results of prior studies,
specifically micro-randomized trials that provide sequential tests of mHealth intervention messages in order to
determine causal effects of messages conditional on user context. However, JITAIs that are developed in this
manner cannot be truly individually tailored because the same decision rules are equally applied to everybody
without regard to information about how individuals actually respond to intervention messages. Rapidly
evolving machine learning methods, specifically reinforcement learning (RL), makes it possible to improve
upon the current approach to JITAIs by learning each person's unique response patterns and integrating this
information into subsequent, person-specific, adaptive decision rules. However, the few behavioral
interventionists who have created mHealth JITAIs for weight loss using RL have noted high practical barriers to
doing so because implementation of RL requires specialized expertise and can be labor intensive. The field
needs a user-friendly tool to reduce these barriers in order for RL methodology to become widely adopted. Aim
1 is to develop Adapt, a tool that iteratively integrates real-time data, applies RL algorithms, and
performs micro-randomized trials to optimize JITAI decision rules for weight loss. Adapt will pull in
digital health data in real-time and conduct micro-randomized trials using behavioral patterns and outcomes to
arrive at the most efficacious intervention message, delivered at the right time, for promoting weight loss in
each participant. Aim 2 is to conduct a 12-week pilot feasibility study testing usability of Adapt in a
weight loss intervention (NudgeRL). NudgeRL will build upon the team's existing JITAI, Nudge, which did
not incorporate RL. The sample will consist of 20 adults with overweight or obesity, at least 50% of whom are
Black or Latinx. Although Adapt will be developed to improve weight loss interventions, its widespread use will
result in more efficient and efficacious JITAIs across a broad range of health outcomes, resulting in a lower
burden of cancer and other disease due to a wide spectrum of improved health behaviors.
项目摘要
超重与13种癌症有关。这些癌症不成比例地影响黑人和拉丁裔
个人,以及那些社会经济地位较低的人,因为超重和肥胖的发病率是
在这些群体中,行为减肥干预是有效的,但在人的干预往往
低到达。随着美国移动的手机拥有量的增加,
比面对面的行为干预更有希望接触到更多的人群。此外,因为他们
与个人一起旅行,并可以实时收集数字信息,mHealth工具使之成为可能,
在需要干预的精确点上对个人进行干预,
(JITAIs)。正如目前实施的,mHealth JITAIs是自适应的,因为干预者
可以先验地指定决策规则,这些决策规则导致由某些
事件这些实验者指定的决策规则通常基于先前研究的结果,
特别是微随机试验,提供移动健康干预信息的顺序测试,
根据用户上下文确定消息的因果关系。然而,在此开发的JITAI
因为同样的决策规则同样适用于每个人,
而不考虑关于个人如何实际响应干预消息的信息。迅速
不断发展的机器学习方法,特别是强化学习(RL),使得提高
通过学习每个人独特的反应模式,
信息转化为后续的、个人特定的、自适应的决策规则。然而,少数行为
使用RL创建mHealth JITAIs减肥的干预者注意到,
这样做是因为RL的实现需要专业知识,并且可能是劳动密集型的。领域
需要一个用户友好的工具来减少这些障碍,以便RL方法被广泛采用。目的
1是开发Adapt,这是一种迭代集成实时数据的工具,应用RL算法,
进行微随机试验,以优化吉泰减肥决策规则。adapt会拉进来
实时数字健康数据,并使用行为模式和结果进行微随机试验,
达到最有效的干预信息,在正确的时间传递,以促进减肥,
每个参与者。目标2是进行一项为期12周的试点可行性研究,
减肥干预(NudgeRL)。NudgeRL将建立在团队现有的JITAI Nudge的基础上,
不包含RL。该样本将由20名超重或肥胖的成年人组成,其中至少50%是
黑人或拉丁裔虽然Adapt将被开发用于改善减肥干预措施,但其广泛使用将
在广泛的健康结果中产生更有效和更有效的JITAI,从而降低
癌症和其他疾病的负担,由于广泛的改善健康行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kimberly Brooke Tompkins Nezami其他文献
Kimberly Brooke Tompkins Nezami的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 41.09万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 41.09万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 41.09万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 41.09万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 41.09万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 41.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 41.09万 - 项目类别:
Research Fellowships