Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
基本信息
- 批准号:10196376
- 负责人:
- 金额:$ 22.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesivesAlagille SyndromeAnteriorBehaviorBiochemicalBiochemical GeneticsBiological AssayBiological ClocksBiological PacemakersBiomechanicsBiophysicsCADASILCartilageCell CommunicationCell DensityCell divisionCell physiologyCellsCharacteristicsComplexCuesDataDefectDermisDevelopmentDevelopmental ProcessDimensionsDiseaseDissectionEmbryoEndotheliumEnvironmentFertilizationFibroblast Growth FactorFibronectinsFingerprintGlassGoalsHourHumanImageImpairmentIn VitroIndividualKnowledgeLinkMalignant NeoplasmsMeasurementMechanicsMesodermMesoderm CellModelingMolecularMonitorMusPaperPathway interactionsPatternPattern FormationPeriodicityPhenotypePhysiologicalPhysiological ProcessesPlayPrintingProcessRegulationResearchRoleSegmentation Clock PathwaySignal TransductionSkeletal MuscleSleeplessnessSomitesSourceStretchingSurfaceSystemTendon structureTissuesVertebratesZebrafishcell behaviorcell motilitydevelopmental diseaseexperiencein vitro Assayinsightlive cell imagingmechanical propertiesmonolayerphysical propertyprecursor cellpreservationprogenitorresponsescoliosissomitogenesisspatiotemporalspine bone structurestem cellstoolvertebrate embryos
项目摘要
Project Summary
Biological oscillators are essential to a variety of cellular, physiological and developmental processes, such as
cell divisions, heartbeats, and somitogenesis. Impaired biological oscillators cause diseases from insomnia to
cancer and have a significant impact on development and differentiation. Segmentation clock, a biological
oscillator well-conserved from zebrafish to humans, plays a key role in regulating the periodic somite formation
during vertebrate embryo somitogenesis. Although the central molecular players of the segmentation clock have
been long identified, the clock is embedded in a large intra- and inter-cellular network, and how it responds to
the complicated mechanical and biochemical microenvironments remains largely unknown. The goal of this
proposal is to develop an in vitro assay that enables the quantitative dissection of the complex processes
involved in the zebrafish somitogenesis. Presomitic mesoderm (PSM) cells, the precursor cells involved in the
somitogenesis, will be isolated from zebrafish embryos and cultured and examined under an array of
micromechanical tools with tunable mechanical cues (both substrate rigidity and mechanical stretching) across
a physiological range. Live imaging will be conducted to track cell behaviors, to monitor their oscillatory
behaviors, intracellular signaling activities and cell mechanics (including both cytoskeletal contractility and cell
stiffness) as a function of substrate rigidity and mechanical stretching. Importantly, our studies will be conducted
for both single cells as well as in the context of cell colonies where cell-cell communications are preserved.
Together, our proposed studies will lead to new knowledge about how the mechanical and biochemical
microenvironments jointly regulate PSM cells that self-organize into developmental patterns.
项目摘要
生物振荡器对于各种细胞、生理和发育过程是必不可少的,例如
细胞分裂心跳和体节发生受损的生物振荡器会导致失眠,
癌症,并对发育和分化有重大影响。分段时钟,一个生物
振荡器从斑马鱼到人类都很保守,在调节周期性体节的形成中起着关键作用
在脊椎动物胚胎体节发生过程中。尽管分裂时钟的核心分子参与者
长期以来,时钟被发现嵌入在一个大型的细胞内和细胞间网络中,以及它如何响应
复杂的机械和生物化学微环境在很大程度上仍然是未知的。这个目标
一个建议是开发一种体外测定,使复杂的过程的定量解剖
参与了斑马鱼的体节发生。前体中胚层(PSM)细胞,参与细胞分化的前体细胞,
体细胞发生,将从斑马鱼胚胎中分离出来,培养并在一系列的
具有可调机械信号(衬底刚度和机械拉伸)的微机械工具
生理范围。将进行实时成像以跟踪细胞行为,监测其振荡
行为、细胞内信号传导活动和细胞力学(包括细胞骨架收缩性和细胞力学)。
刚度)作为基底刚度和机械拉伸的函数。重要的是,我们的研究将在
对于单细胞以及在细胞间通讯被保留的细胞集落的情况下。
总之,我们提出的研究将导致新的知识,如何机械和生化
微环境共同调节自我组织成发育模式的PSM细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 22.29万 - 项目类别:
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 22.29万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 22.29万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 22.29万 - 项目类别:
相似海外基金
Resolving Uncertainty in Alagille Syndrome Diagnostics
解决阿拉吉尔综合征诊断中的不确定性
- 批准号:
10734881 - 财政年份:2023
- 资助金额:
$ 22.29万 - 项目类别:
Augmented Notch signaling as a therapeutic approach for Alagille Syndrome
增强型 Notch 信号传导作为 Alagille 综合征的治疗方法
- 批准号:
10504974 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Augmented Notch signaling as a therapeutic approach for Alagille Syndrome
增强型 Notch 信号传导作为 Alagille 综合征的治疗方法
- 批准号:
10672969 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Alagille Syndrome Scientific Meeting - Measuring What Matters
阿拉吉尔综合症科学会议 - 衡量重要的事情
- 批准号:
10469076 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Targeting POGLUT1 to promote biliary development in Alagille syndrome
靶向 POGLUT1 促进 Alagille 综合征胆道发育
- 批准号:
10449607 - 财政年份:2022
- 资助金额:
$ 22.29万 - 项目类别:
Molecular and cellular basis of the renal diseases associated with Alagille Syndrome
阿拉吉尔综合征相关肾脏疾病的分子和细胞基础
- 批准号:
10617239 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Molecular and cellular basis of the renal diseases associated with Alagille Syndrome
阿拉吉尔综合征相关肾脏疾病的分子和细胞基础
- 批准号:
10209370 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Molecular and cellular basis of the renal diseases associated with Alagille Syndrome
阿拉吉尔综合征相关肾脏疾病的分子和细胞基础
- 批准号:
10399602 - 财政年份:2021
- 资助金额:
$ 22.29万 - 项目类别:
Combined genetic analyses can achieve efficient diagnostic yields for subjects with Alagille syndrome
结合遗传分析可以对阿拉吉勒综合征受试者实现有效的诊断率
- 批准号:
17K11516 - 财政年份:2017
- 资助金额:
$ 22.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Negative regulation of Jagged1 by glycosylation: towards a mechanism-based therapy for Alagille syndrome
糖基化对 Jagged1 的负调控:针对 Alagille 综合征的基于机制的治疗
- 批准号:
9310392 - 财政年份:2016
- 资助金额:
$ 22.29万 - 项目类别: