Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
基本信息
- 批准号:10650713
- 负责人:
- 金额:$ 17.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-21 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:37 weeks gestationAddressAdhesionsAnimal ModelApicalAutomobile DrivingBacteriaBacterial InfectionsBiological ModelsBirthCellsCharacteristicsClinicalClinical ResearchCollagen Type IVComplexDevelopmentDiagnosisDiscipline of obstetricsDiseaseEarly DiagnosisEarly InterventionEmbryonic DevelopmentEpitheliumEtiologyExperimental ModelsExtracellular MatrixExtravasationFibroblastsGoalsHumanImageImmune responseInflammationInflammatory ResponseInterventionInvadedInvestigationKnowledgeLinkMedicalMembraneMesenchymalMethodologyMicrofluidicsModelingMolecular TargetMorbidity - disease ratePathologicPathologyPerinatalPharmaceutical PreparationsPoisonPregnancyPregnancy ComplicationsPremature BirthPrevalencePreventionProcessReproducibilityResearchResolutionRisk FactorsRoleSamplingScreening procedureStudy modelsSurfaceSystemTechnologyTestingTimeTissue membraneTissuesUnited States National Institutes of Healthadverse outcomeamnionamniotic cavitycytokineexperimental studyfetalhigh throughput screeninghuman pluripotent stem cellhuman tissueimplantationinnovationinnovative technologiesintraamniotic infectionmanufacturemembrane modelmolecular markermonolayermortalityneonatal outcomeorgan on a chippathogenic bacteriaprenatalpreterm premature rupture of membranespreventpublic health relevancescreeningtooltrafficking
项目摘要
Project Summary
Intra-amniotic infection, also referred to as chorioamnionitis, is a major etiological factor of preterm premature
rupture of the membranes (pPROM), leading to preterm birth. Despite its prevalence and grave consequences,
the pathology of intra-amniotic infection has yet to be completely understood due to a lack of tractable human-
relevant models. Even though animal models of preterm birth have been successfully developed for testing
medical interventions of intra-amniotic infection, they remain suboptimal for quantitative studies of dynamic
bacterium-amnion interactions in the intrauterine cavity. The scarcity of preterm human amnion samples,
especially from early/mid-gestation stages, also prevents these human tissues as experimental models for
studying intra-amniotic infection and its functional link to pPROM. Altogether, there is a critical need for
quantitative, tractable, human-relevant amnion membrane models for advancing fundamental understanding of
intra-amniotic infection.
The primary goal of this NIH R21 project is to specifically address this significant technological need, by
developing a human-relevant amnion membrane model that can faithfully recapitulate the interaction between
bacteria and amnion membrane tissues, and at the same time, allow high-resolution, quantitative experiments
to study mechanisms underlying bacterial invasion of the amniotic cavity. In our preliminary study, we have
unexpectedly discovered the amniogenic differentiation potency of human pluripotent stem cells (hPSCs) and
successfully developed an hPSC-based, synthetic microfluidic embryogenesis platform in which key
developmental landmarks during early human post-implantation development can be recapitulated
successively in a highly controllable and scalable fashion. Importantly, we also observed sensitive
inflammatory response of hPSC-derived amniotic cells to bacterial infection. Thus, in this research we propose
to leverage the amnion differentiation potential of hPSCs, in conjunction with innovative microfluidics, to
develop the first-of-its-kind human amnion membrane organ-on-chip system. We will further apply this tractable
experimental system to quantitatively study the dynamics of bacterial invasion of the amniotic cavity and to
elucidate the functional connection between inflammation-induced amniotic membrane remodeling and intra-
amniotic bacterial trafficking. Successful accomplishment of this proposed research will lead to innovative
technologies and methodologies for controllable, reproducible, and scalable manufacturing of human amnion
membrane tissues, offering a tractable experimental system for studying related pregnancy complications,
including intra-amniotic infection. The reproducibility and scalability of the human amnion membrane organ-on-
chip system will make it a promising screening platform to explore complex interactions between the human
amnion membrane, bacterial pathogens, drugs and toxic substances.
项目摘要
羊膜腔内感染,又称绒毛膜炎,是早产的主要病因之一,
胎膜早破(pPROM),导致早产。尽管其流行和严重后果,
羊膜内感染的病理学尚未完全了解,因为缺乏易处理的人类-
相关模型。尽管早产的动物模型已经成功地开发出来用于测试,
羊膜内感染的医疗干预,它们仍然是动态定量研究的次优选择。
子宫腔内细菌-羊膜相互作用。早产人类羊膜样本的稀缺,
特别是从妊娠早期/中期阶段,也阻止了这些人体组织作为实验模型,
研究羊膜内感染及其与胎膜早破的功能联系。总之,迫切需要
定量的,易处理的,与人类相关的羊膜模型,用于促进对
羊膜内感染
该NIH R21项目的主要目标是通过以下方式具体解决这一重大技术需求:
开发一种与人类相关的羊膜模型,该模型可以忠实地再现
细菌和羊膜组织,同时,允许高分辨率,定量实验
研究细菌侵入羊膜腔的潜在机制。在我们的初步研究中,
出乎意料地发现了人多能干细胞(hPSC)的促分化潜能,
成功开发了基于hPSC的合成微流体胚胎发生平台,其中关键
可以概括早期人类着床后发育过程中的发育标志,
以高度可控和可扩展的方式连续地进行。重要的是,我们还观察到敏感的
hPSC衍生的羊膜细胞对细菌感染的炎症反应。因此,在这项研究中,我们建议
利用hPSC的羊膜分化潜力,结合创新的微流体技术,
开发出第一个人类羊膜器官芯片系统。我们将进一步应用这一易于处理的
定量研究细菌侵入羊膜腔的动力学,
阐明炎症诱导的羊膜重塑和羊膜内分泌之间的功能联系。
羊膜细菌运输。这项研究的成功完成将导致创新
用于可控、可再现和可扩展地制造人羊膜的技术和方法
膜组织,为研究相关妊娠并发症提供了一个易于处理的实验系统,
包括羊膜内感染人羊膜器官-对-
芯片系统将使其成为一个有前途的筛选平台,以探索人类之间的复杂相互作用
羊膜、细菌病原体、药物和有毒物质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 17.85万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 17.85万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 17.85万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 17.85万 - 项目类别:
Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
- 批准号:
9805605 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 17.85万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.85万 - 项目类别:
Research Grant