Synthetic microfluidic synthesis of spinal cord tissues from human pluripotent stem cells
人类多能干细胞脊髓组织的微流体合成
基本信息
- 批准号:9805605
- 负责人:
- 金额:$ 42.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAutologousBiologyCell TherapyCellsChemical StimulationChemicalsCodeCystDevelopmentDevicesDiagnosisDisease modelDrug toxicityEctodermEmbryoFoundationsGene Expression ProfileGenerationsGeneticGoalsGrowth and Development functionHumanImpairmentInvestigationLeadLifeLiquid substanceMeasurementMethodologyMicrofluidic MicrochipsMicrofluidicsModelingMorphologyNervous system structureNeural Tube DevelopmentNeural tubeNeuraxisNeuroepithelialNeuroepithelial CellsNeuronsOrganoidsPathologyPatternPattern FormationPositioning AttributePreventionProcessPropertyProtocols documentationReproducibilityResearchRouteSHH geneSignal InductionSignal TransductionSpecific qualifier valueSpinalSpinal CordStem Cell DevelopmentStem cellsStructureSystemTarget PopulationsTissuesTubular formationUnited States National Institutes of Healthbasecell transformationhuman pluripotent stem cellhuman tissueinnovationinnovative technologiesmorphogensnerve stem cellnervous system developmentnervous system disorderneural patterningneural plateprecursor cellprogenitorprogramspublic health relevancequantumrelating to nervous systemscreeningself organizationsmoothened signaling pathwaytranscription factor
项目摘要
Project Summary
During development of the vertebrate nervous system, a vast array of neurons will develop in discrete
anatomical positions, acquire varied morphological forms, and establish connections with specific populations
of target cells. Such spatial organization of cell fates and differentiation during the development of the nervous
system are directed by concentration gradients of chemical signals, termed morphogens. Even though the
importance of graded morphogen signaling in developmental pattern formation has been well recognized, it
remains a significant question in biology about how embryonic progenitor cells transform dynamic changes in
developmental signaling into spatial patterns of gene expression and cellular differentiation in a reliable and
robust fashion. The long-term functional goal of this NIH R21 project is to specifically address the significant
challenge in understanding the interpretation of morphogen gradients by intracellular signaling cascades while
embryonic precursor cells are undergoing multicellular self-organization during developmental patterning.
Specifically, we propose to leverage the intrinsic lumenogenic and self-organizing properties of neuroepithelial
(NE) cells, the embryonic precursor cells in the neural tube, in conjunction with an innovative microfluidic
embryological device, to achieve controllable and reproducible generations of lumenal NE cysts to mimic un-
patterned spinal cord tissues. High-purity NE cells will be derived from human pluripotent stem cells (hPSCs)
using established 2D directed differentiation protocols. Lumenal NE cysts will then be utilized seamlessly in
the same microfluidic device for downstream asymmetrical patterning using the morphogen Sonic hedgehog
(Shh) to achieve progressive acquisition of ventral neuronal subtypes in the spinal cord. Successful
accomplishment of this proposed research will lead to the establishment of an innovative microfluidics-based
methodology for controllable, reproducible, and scalable generation of (autologous) human spinal cord tissues
from hPSCs, a quantum leap compared with existing 3D organoid culture systems that are known to lack
controllability and reproducibility. Furthermore, our synthetic patterned human spinal cord model will provide a
very useful experimental platform that offers superior experimental controls of key parameters and quantitative
measurements to allow in-depth mechanistic investigations on the emergent self-organizing principles and
pattering mechanisms that provide robustness and reliability to embryonic patterning, a long-standing question
in biology.
项目摘要
在脊椎动物神经系统的发育过程中,大量的神经元将以离散的方式发育。
解剖位置,获得不同的形态形式,并建立与特定人群的联系
的靶细胞。神经系统发育过程中细胞命运和分化的这种空间组织
系统由称为形态发生素的化学信号的浓度梯度指导。即使
分级形态发生蛋白信号在发育模式形成中的重要性已被充分认识,
仍然是生物学中的一个重要问题,即胚胎祖细胞如何将
发育信号转化为基因表达和细胞分化的空间模式,
稳健的时尚。该NIH R21项目的长期功能目标是专门解决
理解细胞内信号级联对形态发生梯度的解释的挑战,
胚胎前体细胞在发育模式期间经历多细胞自组织。
具体地说,我们建议利用神经上皮细胞的内在管腔生成和自组织特性,
(NE)细胞,神经管中的胚胎前体细胞,结合创新的微流体
胚胎学装置,以实现可控制和可再生的内腔NE囊肿世代,以模拟非-
图案化的脊髓组织高纯度NE细胞将来源于人多能干细胞(hPSC)
使用已建立的2D定向分化方案。然后,管腔NE囊肿将被无缝地用于
使用形态发生剂Sonic hedgehog进行下游不对称图案化的相同微流体装置
(Shh)以实现脊髓中腹侧神经元亚型的渐进性获取。成功
这项研究的完成将导致建立一个创新的基于微流体的
用于可控、可再现和可扩展地产生(自体)人脊髓组织的方法
与现有的3D类器官培养系统相比,
可控性和再现性。此外,我们的合成图案化的人类脊髓模型将提供一个
非常有用的实验平台,提供关键参数和定量的上级实验控制
测量,以允许深入的机制调查的紧急自组织原则,
为胚胎模式提供鲁棒性和可靠性的模式机制,这是一个长期存在的问题,
在生物学上。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianping Fu其他文献
Jianping Fu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianping Fu', 18)}}的其他基金
Modeling NDE1 function in dysregulated brain development using a microfluidic CNS model
使用微流体中枢神经系统模型模拟 NDE1 在大脑发育失调中的功能
- 批准号:
10666902 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
A Fully Patterned Human Neural Tube Model Using Microfluidics
使用微流体技术的完全图案化的人类神经管模型
- 批准号:
10732812 - 财政年份:2023
- 资助金额:
$ 42.16万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10505751 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10372321 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Amnion membrane organ-on-chip for modeling intra-amniotic infection
用于模拟羊膜内感染的羊膜器官芯片
- 批准号:
10650713 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Controlled generation of human embryoids using optogenetics
利用光遗传学控制人类胚胎的产生
- 批准号:
10700977 - 财政年份:2022
- 资助金额:
$ 42.16万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10196376 - 财政年份:2021
- 资助金额:
$ 42.16万 - 项目类别:
Quantitative characterization of a vertebrate segmentation clock response to biomechanical signals during zebrafish somitogenesis
斑马鱼体节发生过程中脊椎动物分段时钟对生物力学信号响应的定量表征
- 批准号:
10369029 - 财政年份:2021
- 资助金额:
$ 42.16万 - 项目类别:
2020-2022 Biomedical Engineering Society (BMES) Cellular and Molecular (CMBE) Conference
2020-2022年生物医学工程学会(BMES)细胞与分子(CMBE)会议
- 批准号:
10560463 - 财政年份:2019
- 资助金额:
$ 42.16万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.16万 - 项目类别:
Research Grant