Calcium Binding Proteins Regulate Susceptibility to Damage in the Inner Ear
钙结合蛋白调节内耳损伤的易感性
基本信息
- 批准号:10202072
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acquired DeafnessAcuteAddressAffectAge of OnsetAgingAmericanAnimal ModelAnimalsAuditoryAuditory systemBinding ProteinsBiochemicalBiological AssayBuffersCalciumCalcium SignalingCalcium-Binding ProteinsCell Culture TechniquesCell DeathCell LineCell NucleusCell SurvivalCell physiologyCellsCellular StressCochleaCollectionComplexConfocal MicroscopyCuesCultured CellsCytoplasmData AnalysesDefectDevelopmentEarElectron MicroscopyEnvironmental Risk FactorExposure toFrequenciesGeneticHairHair CellsHearingHigh PrevalenceHigh-Frequency Hearing LossHyperacusisImaging TechniquesInjuryKineticsLabyrinthLeadLocationLoudnessMammalian CellMediatingMethodsMitochondriaMolecularMorphologyMusMutant Strains MiceNoiseNuclear TranslocationOuter Hair CellsOxidative StressPlayPredispositionPreparationPresbycusisProcessProteinsPublic HealthQuantitative Reverse Transcriptase PCRRegulationResearchResearch PersonnelResearch Project GrantsResolutionRoleSentinelShapesSignal TransductionSourceStressStructural defectSynapsesTestingTimeTweensWestern BlottingWild Type Mouseage effectage relatedaging populationbiological adaptation to stresscell injurycholinergiccomparativegenetic straingraduate studenthearing impairmentimmunocytochemistryin vivoinhibitor/antagonistlight microscopymutantnerve supplyoncomodulinprogramsrepairedresponsesoundtoolundergraduate student
项目摘要
PROJECT SUMMARY/ABSTRACT
Approximately 15% of Americans have high frequency hearing loss caused by exposure to loud sounds and
50% of Americans over 75 years old are affected by presbycusis. Although substantial progress has been
made in determining the genetic and cellular functions disrupted by acquired hearing loss, comparatively little
is known about the endogenous cellular and molecular mechanisms used to protect cochlear hair cells from
the damaging effects of aging and noise. The long-term objective of this research is to investigate the role of
mobile Ca2+ buffers in the inner ear especially during development and aging. It is our contention that
understanding maturational processes that occur during development may provide important cues to
understanding attempts to repair damage during aging. In the cochlea, outer hair cells (OHCs) act as sentinels
of cochlear injury. Calcium regulation is fundamentally important to OHC development, function and aging. This
proposal focuses on the development and age-related role of oncomodulin (OCM), a major Ca2+-binding
protein preferentially expressed in OHCs. We hypothesize that OCM is necessary for the maturation of calcium
signaling in OHCs and protects OHCs from the damaging effects of cellular stress. Specific Aim 1 determines
the role OCM has in regulating Ca2+ signaling in pre-hearing and post-hearing OHCs. We will use Ca2+
imaging techniques and organotypic and cell culture methods to address the following hypotheses: 1. OCM
shortens Ca2+ signaling kinetics and magnitudes in pre- and post-hearing OHCs; 2. OCM modulates the
expression of other proteins involved in OHC Ca2+ signaling; 3. OCM Ca2+ signaling depends on the Ca2+
source. Specific Aim 2 tests whether OCM mediates sensitivity to aging and noise. Using in vivo
functional assays assessing cochlear thresholds (ABRs and DPOAEs) and light, confocal and electron
microscopy in Ocm mutant mice, we will investigate the following hypotheses: 1. targeted deletion of Ocm
accelerates ARHL independent of genetic strain leading to decreased suprathreshold responses, loss of OHC
cholinergic efferent synapses, and cell death; 2. OCM deficiency makes OHCs more susceptible to damage
after cochlear injury. Specific Aim 3 tests whether OCM modulates Ca2+-mediated cellular stress and
promotes cell survival. Using qRT-PCR, western blots, and immunocytochemistry in wild-type and mutant
ears and in transfected cell lines, we will investigate the following hypotheses: 1. In response to stress, OCM
translocates from cytoplasm to the nucleus ; 2. OCM modulates cellular responses to mitochondrial stress; and
3. OCM intracellular location and modulation of cell stress promote overall cell survival. In summary, these
studies on OCM provide new tools that should significantly enhance our understanding of the role of Ca2+
regulation in protecting auditory function. Undergraduates will play significant roles roles in the collection and
analysis of data of each aim.
项目摘要/摘要
大约15%的美国人因暴露于大声的声音和
75岁以上的美国人中有50%受到长老会的影响。尽管取得了很大的进步
在确定因获得性听力损失而破坏的遗传和细胞功能时制造的,相对较少
关于用于保护耳蜗细胞免受的内源性细胞和分子机制已知
衰老和噪声的破坏性影响。这项研究的长期目标是调查
内耳的移动CA2+缓冲区,尤其是在开发和衰老过程中。我们的论点是
了解开发过程中发生的成熟过程可能会为
了解在衰老过程中修复损害的尝试。在耳蜗中,外毛细胞(OHC)充当哨兵
耳蜗受伤。钙调节对OHC的开发,功能和衰老根本重要。这
提案重点介绍了oncomodulin(OCM)的发展和年龄相关的作用,这是主要的Ca2+结合
最好在OHC中表达蛋白质。我们假设OCM对于钙的成熟是必需的
OHC中的信号传导并保护OHC免受细胞应激的破坏作用。特定目标1确定
OCM在调节Ca2+信号传导中的作用在听证前和听证后OHC中的作用。我们将使用Ca2+
成像技术以及有机和细胞培养方法以解决以下假设:1。OCM
在听证前和听证后OHC中缩短Ca2+信号动力学和磁化; 2。OCM调节
参与OHC Ca2+信号传导的其他蛋白质的表达; 3。OCMCA2+信号取决于Ca2+
来源。特定目标2测试OCM是否介导对衰老和噪声的敏感性。使用体内
功能评估评估人耳蜗阈值(ABR和DPOAES)以及光,共聚焦和电子
OCM突变小鼠中的显微镜检查,我们将研究以下假设:1。靶向OCM的缺失
加速ARHL独立于遗传菌株,导致上股权降低,OHC的丧失
胆碱能有效的突触和细胞死亡; 2。OCM缺乏使OHC更容易受到损坏
人工耳蜗受伤。特定目标3测试OCM是否调节Ca2+介导的细胞应激和
促进细胞存活。在野生型和突变体中使用QRT-PCR,蛋白质印迹和免疫细胞化学
耳朵和翻译的细胞系中,我们将研究以下假设:1。响应压力,OCM
从细胞质转移到细胞核; 2。OCM调节细胞对线粒体应激的反应;和
3。OCM细胞内位置和细胞应激的调节促进总体细胞存活。总而言之,这些
OCM的研究提供了新工具,应显着增强我们对CA2+作用的理解
保护听觉功能方面的调节。本科生将在集合中扮演重要角色,
分析每个目标的数据。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Oncomodulin regulates spontaneous calcium signalling and maturation of afferent innervation in cochlear outer hair cells.
- DOI:10.1113/jp284690
- 发表时间:2023-10
- 期刊:
- 影响因子:5.5
- 作者:Yang, Yang;Murtha, Kaitlin;Climer, Leslie K.;Ceriani, Federico;Thompson, Pierce;Hornak, Aubrey J.;Marcotti, Walter;Simmons, Dwayne D.
- 通讯作者:Simmons, Dwayne D.
Oncomodulin (OCM) uniquely regulates calcium signaling in neonatal cochlear outer hair cells.
- DOI:10.1016/j.ceca.2022.102613
- 发表时间:2022-07
- 期刊:
- 影响因子:4
- 作者:Murtha, Kaitlin E.;Yang, Yang;Ceriani, Federico;Jeng, Jing-Yi;Climer, Leslie K.;Jones, Forrest;Charles, Jack;Devana, Sai K.;Hornak, Aubrey J.;Marcotti, Walter;Simmons, Dwayne
- 通讯作者:Simmons, Dwayne
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DWAYNE D SIMMONS其他文献
DWAYNE D SIMMONS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DWAYNE D SIMMONS', 18)}}的其他基金
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目