Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
基本信息
- 批准号:10202074
- 负责人:
- 金额:$ 60.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-08 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AblationAcetyl Coenzyme AAddressAffectAgingAnabolismAttenuatedCarbonCarrier ProteinsCartilageCatabolismChondrocytesCitratesClinical TreatmentDataDegenerative polyarthritisDevelopmentDiseaseEnzymesEquilibriumGene DeletionGene ExpressionGene TargetingGenesGeneticGlucoseGlutamineGlycolysisGlycosaminoglycansGoalsHexosaminesHigh Pressure Liquid ChromatographyHomeostasisHospital CostsHyaluronic AcidIGF1 geneIGF1R geneIn VitroInjuryJointsKnowledgeLabelLeadMAP3K7 geneMass Spectrum AnalysisMediatingMedicalMedicareMedicineMetabolicMitochondriaMusPathway interactionsPatientsPharmaceutical PreparationsProductionProteoglycanRadiolabeledRegulationReplacement ArthroplastyReplacement TherapyRoleSignal TransductionSourceSymptomsTherapeuticTransforming Growth Factor alphaUnited StatesUp-RegulationWorkarticular cartilageblood glucose regulationfructose-6-phosphategain of functiongenetic approachglucose metabolismglucose uptakein vitro Modelin vivoinnovationinsightjoint injuryloss of functionmetabolomicsnoveloverexpressionpreventreceptorresponsetherapeutic targettranscriptome sequencinguptake
项目摘要
ABSTRACT
TGF is an essential regulator of articular chondrocyte/cartilage homeostasis. However, reduced/absent
TGF receptor (Tgfbr2) expression with aging, joint injury, and in osteoarthritis (OA) prevents the use of TGF1
as a clinical treatment for OA. Therefore, the goal of this proposal is to identify the key genes, pathways, and
potential therapeutic targets that are regulated by TGF1.
Our preliminary data shows that TGF1 regulates chondrocyte homeostasis and anabolic biosynthesis
through stimulation of glucose uptake, glycolysis and anabolic Hexosamine Biosynthetic Pathway (HBP).
Specifically, we show that TGF, via TAK1 signaling, induces the HBP through upregulation of 3 key
genes/targets: i) Glut1, the major enzyme involved in glucose uptake; ii) Gfpt2 (glutamine-fructose-6-phosphate
amidotransferase-2, the rate limiting enzyme of HBP), and iii) Slc25a1, the key mitochondrial citrate transport
protein that provides a source of cytoplasmic Acetyl CoA necessary for production of UDP-GlcNAc. UDP-GlcNAc
is the terminal metabolite in the HBP pathway and is required for matrix synthesis of hyaluronic acid and
glycosaminoglycans (GAGs). Our mass spectrometry (MS) data establish that TGF1 enhances the production
of UDP-GlcNAc and increases the proportion of carbons in UDP-GlcNAc derived from radiolabeled glucose.
Moreover, our RNA-seq data and additional in vitro data identify Igf1 as a critical downstream target of TGF1
since the induction of glucose metabolism, glycolytic gene expressions, glucose uptake, HBP, and proteoglycan
production is abolished in in TGF1 treated articular chondrocytes with Igf1r gene deletion. In contrast, Igf1
over-expression mimics the effect of TGF1 on glucose metabolism as well as cartilage anabolism and
homeostasis. Collectively, these novel findings indicate the existence of a TGF/IGF1 signaling axis in
chondrocytes, and that modulation of this axis may be a promising therapeutic strategy to treat OA.
Two Specific Aims are proposed. Specific Aim 1 will define the upregulation of Hexosamine Biosynthesis
Pathway (HBP) as a key mechanism involved in TGF-mediated homeostasis of articular cartilage.
Complementary in vitro and in vivo genetic approaches targeting Tgfbr2, Tak1, Glut1, Gfpt2 and Slc25a1 as well
as HPLC-MS will be used to establish regulation of the HBP as an essential anabolic pathway necessary for
articular chondrocyte homeostasis. Specific Aim 2 will utilize Igf1r loss-of-function and Igf1 gain-of-function
models in vitro and in vivo to establish Igf1 signaling as a downstream effector of TGF regulation of glucose
metabolism and articular cartilage homeostasis. In summary, the proposed studies will define TGF/IGF1 as a
novel pathway axis in regulation of glucose metabolism, HBP, and articular chondrocytes homeostasis in the
context of OA. This work will enhance our understanding of mechanisms regulating OA and provide novel targets
for innovative therapeutic approaches.
摘要
转化生长因子是关节软骨细胞/软骨内稳态的重要调节因子。但是,减少/缺失
转化生长因子受体(TGFBR2)在增龄、关节损伤和骨关节炎(OA)中的表达阻止转化生长因子1的使用
作为治疗骨性关节炎的一种临床方法。因此,这项提议的目标是确定关键基因、途径和
受转化生长因子1调控的潜在治疗靶点。
我们的初步数据显示,转化生长因子1调节软骨细胞的动态平衡和合成代谢的生物合成。
通过刺激葡萄糖摄取、糖酵解和合成己糖胺生物合成途径(HBP)。
具体地说,我们发现转化生长因子通过tak1信号途径,通过上调3key来诱导高血压。
基因/靶点:i)Glut1,参与葡萄糖吸收的主要酶;ii)Gfpt2(谷氨酰胺-果糖-6-磷酸
氨基转移酶-2,HBP的限速酶),以及III),关键的线粒体柠檬酸运输的SLC25A1
提供产生UDP-GlcNAc所需的细胞质乙酰辅酶A来源的蛋白质。UDP-GlcNAc
是HBP途径中的终末代谢物,是合成透明质酸和
糖胺聚糖(GAG)。我们的质谱学(MS)数据证实转化生长因子-1促进了
并增加了来自放射性标记葡萄糖的UDP-GlcNAc中碳的比例。
此外,我们的rna-seq数据和额外的体外数据表明,igf1是转化生长因子1的关键下游靶点。
自从诱导糖代谢、糖酵解基因表达、葡萄糖摄取、HBP和蛋白多糖
在转化生长因子1基因缺失的关节软骨细胞中,产生的产物被取消。相比之下,Igf1
过度表达模拟转化生长因子1对糖代谢和软骨合成代谢的影响
动态平衡。总之,这些新的发现表明转化生长因子/igf1信号轴的存在。
这一轴的调节可能是治疗骨性关节炎的一种很有前途的治疗策略。
提出了两个具体目标。具体目标1将定义己糖胺生物合成的上调
途径是转化生长因子介导的关节软骨内稳态的关键机制。
针对TGFBR2、Tak1、Glut1、Gfpt2和SLC25A1的体外和体内互补遗传途径
由于高效液相色谱-质谱法将被用来建立对HBP的调节,作为必要的合成代谢途径
关节软骨细胞动态平衡。具体目标2将利用Igf1r功能丧失和Igf1功能获得
体外和体内模型建立Igf1信号作为转化生长因子调节血糖的下游效应
代谢与关节软骨动态平衡。总之,拟议的研究将把转化生长因子/igf1定义为一种
新途径轴在调节糖代谢、HBP和关节软骨细胞内稳态中的作用
办公自动化的背景。这项工作将加深我们对办公自动化调控机制的理解,并提供新的目标
用于创新的治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Regis J O'Keefe其他文献
Regis J O'Keefe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Regis J O'Keefe', 18)}}的其他基金
Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
- 批准号:
10447803 - 财政年份:2021
- 资助金额:
$ 60.68万 - 项目类别:
Metabolic Regulation of Articular Cartilage and Joint Homeostasis
关节软骨的代谢调节和关节稳态
- 批准号:
10656369 - 财政年份:2021
- 资助金额:
$ 60.68万 - 项目类别:
Bone Tissue Engineering and Regeneration: From Discovery to the Clinic
骨组织工程与再生:从发现到临床
- 批准号:
8062953 - 财政年份:2010
- 资助金额:
$ 60.68万 - 项目类别:
P2: Role of PTH in enhancing fracture repair in aging
P2:PTH 在增强老化骨折修复中的作用
- 批准号:
7891426 - 财政年份:2009
- 资助金额:
$ 60.68万 - 项目类别:
P2: Role of PTH in enhancing fracture repair in aging
P2:PTH 在增强老化骨折修复中的作用
- 批准号:
7682121 - 财政年份:2008
- 资助金额:
$ 60.68万 - 项目类别:
Molecular Biology and Therapeutics in Musculoskeletal Oncology (MBTMO) Research S
肌肉骨骼肿瘤学的分子生物学和治疗学 (MBTMO) 研究 S
- 批准号:
7541111 - 财政年份:2008
- 资助金额:
$ 60.68万 - 项目类别:
The use of genetic models to define the role of beta-catenin in post-natal growth
使用遗传模型来定义 β-连环蛋白在产后生长中的作用
- 批准号:
7263667 - 财政年份:2007
- 资助金额:
$ 60.68万 - 项目类别:
The use of genetic models to define the role of beta-catenin in post-natal growth
使用遗传模型来定义 β-连环蛋白在产后生长中的作用
- 批准号:
7913043 - 财政年份:2007
- 资助金额:
$ 60.68万 - 项目类别:
The use of genetic models to define the role of beta-catenin in post-natal growth
使用遗传模型来定义 β-连环蛋白在产后生长中的作用
- 批准号:
7667747 - 财政年份:2007
- 资助金额:
$ 60.68万 - 项目类别:
The use of genetic models to define the role of beta-catenin in post-natal growth
使用遗传模型来定义 β-连环蛋白在产后生长中的作用
- 批准号:
8120780 - 财政年份:2007
- 资助金额:
$ 60.68万 - 项目类别:
相似海外基金
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
8783415 - 财政年份:2014
- 资助金额:
$ 60.68万 - 项目类别:
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
8996048 - 财政年份:2014
- 资助金额:
$ 60.68万 - 项目类别:
The molecular basis for how acetyl-coenzyme A links metabolism to gene expression
乙酰辅酶 A 如何将代谢与基因表达联系起来的分子基础
- 批准号:
9125794 - 财政年份:2014
- 资助金额:
$ 60.68万 - 项目类别:














{{item.name}}会员




