Perceptual integration of luminance, texture and color cues for visual boundary segmentation
用于视觉边界分割的亮度、纹理和颜色线索的感知集成
基本信息
- 批准号:10201916
- 负责人:
- 金额:$ 37.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalColorComputational BiologyComputer AnalysisComputer ModelsCuesDataDiscriminationEducational process of instructingEnvironmentGoalsGrantHumanImageJournalsLaboratoriesLightLiteratureMachine LearningMethodsModelingOutcomePatternPerformancePositioning AttributeProcessPsychophysicsPublicationsResearchResponse to stimulus physiologySeriesSideSourceStimulusSurfaceTechniquesTestingTextureUniversitiesVisionVision researchVisualVisual system structureWorkcomputer studiesexperienceinnovationinsightinterestlaboratory curriculumluminancemachine learning methodneuromechanismneurophysiologynovelpedagogyundergraduate researchundergraduate studentvision science
项目摘要
Project Summary
One of the most essential computations performed by the visual system is segmenting images
into regions corresponding to distinct surfaces. This in turn requires identifying the boundaries
separating image regions, a process known as boundary segmentation. Computational analyses
of natural images have revealed that many visual cues are available at region boundaries,
including differences in luminance, texture, and color. It is known that these cues combine for
tasks like edge localization and orientation discrimination. However, it remains unclear how these
various cues are weighted and combined for boundary segmentation.
In collaborative work with Canadian colleagues at McGill University in Montreal, we have
developed a novel machine learning framework for characterizing human performance on
boundary segmentation tasks using naturalistic micro-pattern stimuli. Our method makes use of
the Filter-Rectify-Filter (FRF) model often applied to characterizing texture boundary
segmentation. The major innovation of our approach is that we fit the FRF model directly to
thousands of psychophysical stimulus-response observations to estimate its major defining
parameters. We have recently applied this approach to investigating spatial strategies for contrast
boundary segmentation and comparing competing hypotheses of how contrast modulation is
integrated across orientation channels. In this grant, we propose to apply both classical
psychophysical techniques and our novel machine learning methodology to understanding the
computations employed to combine luminance, texture and color cues for segmentation.
In Aim 1, we focus on modeling segmentation of luminance-defined boundaries,
comparing the case where each surface has uniform luminance, giving rise to a sharp edge
(luminance step), to the more naturalistic case where the two surfaces have differing proportions
of dark and light micro-patterns on either side of the boundary with no sharp edge (luminance
texture). We will apply our machine learning methodology to test the hypothesis that different
neural mechanisms may be involved in segmenting these two different kinds of luminance
boundaries. In Aim 2, we ask how observers integrate first-order (luminance) and second-order
(texture) cues for boundary segmentation, and if there are differences in cue combination
strategies for luminance steps and luminance textures. We will also compare models embodying
competing hypotheses of the underlying neural mechanisms of cue combination. In Aim 3, we
extend the analyses in Aims 1 and 2 beyond simple luminance differences to include differences
in color. Finally, Aim 4 is a pedagogical aim of promoting undergraduate research.
项目摘要
视觉系统执行的最基本的计算之一是分割图像
分成不同表面的区域这反过来又需要确定边界
分离图像区域,这一过程称为边界分割。计算分析
已经揭示了在区域边界处可以获得许多视觉线索,
包括亮度、纹理和颜色的差异。众所周知,这些线索联合收割机
例如边缘定位和方向辨别。然而,目前尚不清楚这些
对各种线索进行加权和组合以用于边界分割。
通过与蒙特利尔麦吉尔大学的加拿大同事合作,我们
开发了一种新的机器学习框架,用于描述人类在
边界分割任务使用自然的微观模式刺激。我们的方法利用了
滤波-校正-滤波(FRF)模型常用于纹理边界的表征
细分我们的方法的主要创新是我们直接将FRF模型拟合为
成千上万的心理物理刺激反应观察,以估计其主要定义
参数我们最近应用这种方法来研究对比的空间策略
边界分割和比较对比度调制如何
跨方向通道集成。在这个补助金中,我们建议同时应用经典的
心理物理学技术和我们新颖的机器学习方法来理解
用于联合收割机组合亮度、纹理和颜色线索以进行分割的计算。
在目标1中,我们专注于对亮度定义的边界进行建模分割,
比较每个表面具有均匀亮度的情况,产生尖锐边缘
(亮度阶跃),到两个表面具有不同比例的更自然的情况
在边界的任一侧上的暗和亮的微图案,没有尖锐边缘(亮度
纹理)。我们将应用我们的机器学习方法来测试不同的假设,
神经机制可能参与分割这两种不同的亮度
边界在目标2中,我们询问观察者如何整合一阶(亮度)和二阶
(纹理)线索的边界分割,如果有不同的线索组合
亮度步长和亮度纹理的策略。我们还将比较体现
线索组合的潜在神经机制的竞争假设。在目标3中,我们
将目标1和2中的分析扩展到简单的亮度差异之外,以包括
彩色的。最后,目标4是促进本科生研究的教学目标。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Luminance texture boundaries and luminance step boundaries are segmented using different mechanisms.
- DOI:10.1016/j.visres.2021.107968
- 发表时间:2022-01
- 期刊:
- 影响因子:1.8
- 作者:DiMattina C
- 通讯作者:DiMattina C
Distinguishing shadows from surface boundaries using local achromatic cues.
- DOI:10.1371/journal.pcbi.1010473
- 发表时间:2022-09
- 期刊:
- 影响因子:4.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher DiMattina其他文献
Christopher DiMattina的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher DiMattina', 18)}}的其他基金
Neural Coding Primate Vocalizations in Auditory Cortex
灵长类动物听觉皮层发声的神经编码
- 批准号:
6795039 - 财政年份:2003
- 资助金额:
$ 37.43万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 37.43万 - 项目类别:
Standard Grant














{{item.name}}会员




