Multi-omics approaches for gene discovery in Alzheimer's Disease.
阿尔茨海默病基因发现的多组学方法。
基本信息
- 批准号:10201909
- 负责人:
- 金额:$ 163.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAlzheimer&aposs DiseaseAmyloidBase SequenceChromosomesClinicalCodeCollectionCommunitiesComplexComputer softwareComputing MethodologiesDataData SetDementiaDeteriorationDiseaseGene ExpressionGene TargetingGenesGeneticGenomicsGenotype-Tissue Expression ProjectGoalsIndividualLeadMemoryMethodsMolecularMolecular ConformationNatureNeurofibrillary TanglesPathologicPlayProteinsRegulatory ElementResourcesRiskRoleSenile PlaquesSocietiesSoftware ToolsStatistical MethodsTestingTissuesVariantanalytical toolbasecausal variantcognitive functioncostdementia caredesigndisorder riskepigenomicsextracellulargene discoverygenetic testinggenome sequencinggenome wide association studyheterogenous datahigh dimensionalityhyperphosphorylated tauimprovedlarge scale datamanmetabolomicsmultiple omicsneuron lossnew therapeutic targetnovelrepositoryrisk variantstatisticstargeted treatmenttau Proteinstherapeutic developmenttooltraittranscriptometranscriptomicsweb portalwhole genome
项目摘要
Alzheimer’s Disease (AD) is a complex, heterogeneous disorder, and risk to AD is influenced
partly by genetics. Understanding the genetic mechanisms that play a role in disease is important
as it can lead to a better understanding of the underlying molecular mechanisms, and can identify
new gene targets for therapeutic development.
We propose gene centric approaches that leverage diverse omics datasets developed specifically
for AD (such as AMP-AD), but also more general resources such as GTEx, PsychENCODE,
ENCODE, and Roadmap Epigenomics. We will develop quantile tools for transcriptome-wide
association studies (TWAS), which are generalizations of TWAS to more complex and
heterogenous scenarios where the linear assumptions in standard TWAS are likely to fail. We will
also develop gene-based tests using data from WGS by jointly analyzing coding and regulatory
variation in predicted regulatory elements likely to affect the expression of a gene under
consideration.
We will implement these analytical tools into software packages to be made freely available to the
community. We will also apply them to some of the largest existing genetic datasets for AD, both
GWAS and WGS, and will make the results available to the community on a specially designed
web portal.
阿尔茨海默病(AD)是一种复杂的异质性疾病,
一部分是遗传的。了解在疾病中发挥作用的遗传机制是重要的
因为它可以更好地理解潜在的分子机制,
用于治疗开发的新基因靶点。
我们提出了以基因为中心的方法,利用专门开发的各种组学数据集,
对于AD(如AMP-AD),还有更通用的资源,如GTEx,PsychENCODE,
ENCODE和Roadmap Epigenomics。我们将开发用于转录组范围的分位数工具
关联研究(TWAS),这是TWAS的概括,以更复杂,
标准TWAS中的线性假设可能失败的异质场景。我们将
我们还利用WGS的数据,通过联合分析编码和监管,
预测的调节元件的变异可能会影响基因的表达,
考虑.
我们会把这些分析工具编入软件,免费提供给
社区我们还将把它们应用于一些最大的AD遗传数据集,
GWAS和WGS,并将在专门设计的
门户网站。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sufficient direction factor model and its application to gene expression quantitative trait loci discovery.
- DOI:10.1093/biomet/asz010
- 发表时间:2019-04
- 期刊:
- 影响因子:2.7
- 作者:Fei Jiang;Yanyuan Ma;Ying Wei
- 通讯作者:Fei Jiang;Yanyuan Ma;Ying Wei
STATISTICAL INFERENCE IN QUANTILE REGRESSION FOR ZERO-INFLATED OUTCOMES.
零膨胀结果的分位数回归的统计推断。
- DOI:10.5705/ss.202020.0368
- 发表时间:2022
- 期刊:
- 影响因子:1.4
- 作者:Ling,Wodan;Cheng,Bin;Wei,Ying;Willey,JoshuaZ;Cheung,YingKuen
- 通讯作者:Cheung,YingKuen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iuliana Ionita其他文献
Iuliana Ionita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iuliana Ionita', 18)}}的其他基金
The 'Career MODE' Program: Careers through Mentoring and training in Omics and Data for Early-stage investigators
“职业模式”计划:通过为早期研究人员提供组学和数据方面的指导和培训来实现职业生涯
- 批准号:
10670931 - 财政年份:2021
- 资助金额:
$ 163.19万 - 项目类别:
Integrative methods for the identification of causal variants in mental disorder
识别精神障碍因果变异的综合方法
- 批准号:
9037323 - 财政年份:2016
- 资助金额:
$ 163.19万 - 项目类别:
Integrative methods for the identification of causal variants in mental disorder
识别精神障碍因果变异的综合方法
- 批准号:
9262282 - 财政年份:2016
- 资助金额:
$ 163.19万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8842480 - 财政年份:2012
- 资助金额:
$ 163.19万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
9923466 - 财政年份:2012
- 资助金额:
$ 163.19万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8451366 - 财政年份:2012
- 资助金额:
$ 163.19万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8303934 - 财政年份:2012
- 资助金额:
$ 163.19万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8647003 - 财政年份:2012
- 资助金额:
$ 163.19万 - 项目类别:
Statistical Methods to Assess the role of rare Variants in Complex Traits.
评估罕见变异在复杂性状中的作用的统计方法。
- 批准号:
8127996 - 财政年份:2010
- 资助金额:
$ 163.19万 - 项目类别:
Statistical Methods to Assess the role of rare Variants in Complex Traits.
评估罕见变异在复杂性状中的作用的统计方法。
- 批准号:
7978886 - 财政年份:2010
- 资助金额:
$ 163.19万 - 项目类别: