Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
基本信息
- 批准号:8303934
- 负责人:
- 金额:$ 33.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AreaAsthmaAstronomyAutistic DisorderBipolar DisorderChromosomesCollaborationsCommunitiesComplexComputer softwareDNA SequenceDataData SetDevelopmentDiseaseDisease AssociationDisease susceptibilityEnvironmental Risk FactorEpidemiologyFamilyFrequenciesGenesGeneticGenomicsHeritabilityIndividualLinkMental disordersMethodologyMethodsPlayPopulationPublic HealthRare DiseasesRelative (related person)ResearchResearch DesignResearch PersonnelRiskRoleScanningSchizophreniaSoftware ToolsStatistical MethodsTechnologyTestingTimeVariantWorkbasecase controldesigndirect applicationdisorder riskexomegenetic variantgenome wide association studymedical schoolsmethod developmentnext generationnovelpopulation basedsoftware developmentstatisticstraituser friendly software
项目摘要
DESCRIPTION (provided by applicant): We propose to develop novel statistical methods and software tools for disease association testing with rare variants, with particular application to autism. Although genome-wide association studies have led to the discovery of many common variants reproducibly associated with various complex traits, these variants have small effect sizes and overall explain only a small fraction of the total estimated trait heritability. Recent advances in next-generation sequencing technologies allow for the first time an objective assessment of the importance of rare variants in complex diseases. Over the past few years it has become clear from numerous empirical studies that rare variants are an important contributor to disease risk. This is especially compelling for psychiatric diseases, such as schizophrenia and autism, where common disease susceptibility variants have been more difficult to identify. Traditional association testing strategies that have worked well for common variants have low power for the analysis of rare variants, mostly due to the large number of such variants in any genetic region and their low frequency counts in datasets of realistic sizes. Therefore development of powerful methods for rare variant analysis is greatly needed in order to efficiently extract information from the many sequencing datasets currently being generated. In this application we propose novel methods for both population- and family-based designs to identify rare genetic variants that influence risk to complex diseases, with particular application
to autism. In particular, we focus on methods development in the following areas: family-based testing strategies for rare variants, unified testing strategies to efficiently combine family-base and population-based studies, and refinement strategies to identify causal rare variants once an overall association at a gene- or region-level has been established. We will implement the new methods in a comprehensive software package to be made available to the scientific community. Furthermore we will apply these methods to whole-exome data from 1000 autism cases, 1000 matched controls, and 500 autism trios. We believe the proposed research is very timely and has the potential to be of great public health importance through direct application to autism, and more broadly to other complex diseases.
PUBLIC HEALTH RELEVANCE: Autism and other psychiatric diseases are major public health problems. The proposed statistical methodology with direct application to autism will help in the identification of genetic variants influencing autism risk, with important implications for public health.
描述(由申请人提供):我们建议开发新的统计方法和软件工具,用于罕见变异的疾病关联测试,特别适用于自闭症。虽然全基因组关联研究已经发现了许多与各种复杂性状可重复相关的常见变异,但这些变异的效应量很小,总体上只能解释总估计性状遗传力的一小部分。新一代测序技术的最新进展首次允许客观评估复杂疾病中罕见变异的重要性。 在过去的几年里,许多实证研究已经清楚地表明,罕见变异是疾病风险的重要贡献者。这对于精神疾病,如精神分裂症和自闭症,特别引人注目,其中常见的疾病易感性变体更难以识别。传统的关联测试策略对常见变异的分析效果很好,但对罕见变异的分析能力很低,这主要是由于任何遗传区域中的大量此类变异以及它们在现实大小的数据集中的低频率计数。因此,非常需要开发用于罕见变异分析的强大方法,以便从当前生成的许多测序数据集中有效地提取信息。 在本申请中,我们提出了新的方法,用于基于群体和家族的设计,以识别影响复杂疾病风险的罕见遗传变异,
到自闭症。特别是,我们专注于以下领域的方法开发:以家族为基础的罕见变异的测试策略,统一的测试策略,以有效地结合联合收割机家族为基础和人口为基础的研究,和细化策略,以确定因果罕见变异一旦在基因或区域水平的整体关联已经建立。我们将在一个全面的软件包中实施这些新方法,供科学界使用。此外,我们将这些方法应用于1000例自闭症病例,1000例匹配对照和500例自闭症三人组的全外显子组数据。我们相信这项研究非常及时,并且有可能通过直接应用于自闭症以及更广泛的其他复杂疾病而具有重大的公共卫生重要性。
公共卫生相关性:自闭症和其他精神疾病是主要的公共卫生问题。拟议的统计方法与自闭症的直接应用将有助于识别影响自闭症风险的遗传变异,对公共卫生具有重要意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iuliana Ionita其他文献
Iuliana Ionita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iuliana Ionita', 18)}}的其他基金
Multi-omics approaches for gene discovery in Alzheimer's Disease.
阿尔茨海默病基因发现的多组学方法。
- 批准号:
10201909 - 财政年份:2021
- 资助金额:
$ 33.97万 - 项目类别:
The 'Career MODE' Program: Careers through Mentoring and training in Omics and Data for Early-stage investigators
“职业模式”计划:通过为早期研究人员提供组学和数据方面的指导和培训来实现职业生涯
- 批准号:
10670931 - 财政年份:2021
- 资助金额:
$ 33.97万 - 项目类别:
Integrative methods for the identification of causal variants in mental disorder
识别精神障碍因果变异的综合方法
- 批准号:
9037323 - 财政年份:2016
- 资助金额:
$ 33.97万 - 项目类别:
Integrative methods for the identification of causal variants in mental disorder
识别精神障碍因果变异的综合方法
- 批准号:
9262282 - 财政年份:2016
- 资助金额:
$ 33.97万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8842480 - 财政年份:2012
- 资助金额:
$ 33.97万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
9923466 - 财政年份:2012
- 资助金额:
$ 33.97万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8451366 - 财政年份:2012
- 资助金额:
$ 33.97万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8647003 - 财政年份:2012
- 资助金额:
$ 33.97万 - 项目类别:
Statistical Methods to Assess the role of rare Variants in Complex Traits.
评估罕见变异在复杂性状中的作用的统计方法。
- 批准号:
8127996 - 财政年份:2010
- 资助金额:
$ 33.97万 - 项目类别:
Statistical Methods to Assess the role of rare Variants in Complex Traits.
评估罕见变异在复杂性状中的作用的统计方法。
- 批准号:
7978886 - 财政年份:2010
- 资助金额:
$ 33.97万 - 项目类别:
相似海外基金
Defining new asthma phenotypes using high-dimensional data
使用高维数据定义新的哮喘表型
- 批准号:
2901112 - 财政年份:2024
- 资助金额:
$ 33.97万 - 项目类别:
Studentship
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
- 批准号:
485322 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Operating Grants
Data-driven model links BMIz to gene expression in pediatric asthma
数据驱动模型将 BMIz 与小儿哮喘基因表达联系起来
- 批准号:
493135 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
BIOlogic drug safety and effectiveness interNational pharmacoepidemiologIC study in pregnant women with autoimmune disorders and asthma and their children (BIONIC)
患有自身免疫性疾病和哮喘的孕妇及其子女的生物药物安全性和有效性国际药物流行病学研究(BIONIC)
- 批准号:
493526 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Operating Grants
Engaging Patient and Caregivers in Using Patient-reported Outcomes Measures in Pediatric Clinical Care for Asthma
让患者和护理人员参与儿科哮喘儿科临床护理中患者报告的结果测量
- 批准号:
495593 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Basophilic oncostatin M fuels nociceptor neuron-induced asthma
嗜碱性制瘤素 M 促进伤害感受器神经元诱发哮喘
- 批准号:
485504 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Salary Programs
Mechanistic Study of Inspiratory Training in Childhood Asthma
儿童哮喘吸气训练机制研究
- 批准号:
10637048 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Early life exposure to metal mixtures: impacts on asthma and lungdevelopment
生命早期接触金属混合物:对哮喘和肺部发育的影响
- 批准号:
10678307 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Lung resident Treg suppression of Th2 resident memory T cells in allergic asthma
过敏性哮喘中肺常驻 Treg 对 Th2 常驻记忆 T 细胞的抑制
- 批准号:
10664599 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 33.97万 - 项目类别: