Integrative methods for the identification of causal variants in mental disorder
识别精神障碍因果变异的综合方法
基本信息
- 批准号:9037323
- 负责人:
- 金额:$ 40.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-14 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingArchitectureAutistic DisorderBioinformaticsBiologicalBiological AssayCodeCollaborationsCommunitiesComplexComputer softwareDataData SetDevelopmentDiseaseElementsGenerationsGenesGeneticGenetic VariationGenomicsGenotypeGoalsGoldHumanIn VitroIndividualLeadMapsMassive Parallel SequencingMeasuresMental disordersMethodsModelingOdds RatioPathogenesisPhenotypePlayPopulationProteinsPsyche structurePublic HealthReporterResearchResearch PersonnelResolutionRoleSchizophreniaStatistical MethodsTechnologyUntranslated RNAUpdateValidationVariantWeightWorkautism spectrum disorderbasecost efficientdeep sequencingdirect applicationepigenomicsexome sequencingfunctional genomicsgenetic informationgenetic variantgenome wide association studygenome-wideinnovationinterestneuropsychiatrynovelpublic health relevancesoftware developmenttrait
项目摘要
DESCRIPTION (provided by applicant): The tremendous progress in massively parallel sequencing technologies enables investigators to obtain genetic information down to single base resolution on a genome-wide scale in a rapid and cost efficient manner. Despite this progress in data generation, it remains very challenging to analyze and interpret these data. The resulting datasets are high dimensional and very sparse, with millions of genetic variants, the vast majority of which are rare in the population. Identifying which of the many genetic variants in a region of interest are true causal variants is very difficult. Indeed, despite enormous progress in identifying robust associations in genome-wide association studies (GWAS) studies, the underlying causal variants for the vast majority of GWAS loci are unknown. The problem of identifying the underlying causal variants is of fundamental importance for understanding precise biological mechanisms. While experimental functional studies are the gold standard, they are expensive and difficult to implement for a large number of variants. Here we propose to develop state of the art and powerful statistical methods that integrate genome-wide functional annotation data with genetic data on a large number of individuals from whole-exome sequencing and GWAS studies of autism and schizophrenia to help us identify the true causal variants among the abundant natural variation that occurs at a particular locus of interest. The proposed statistical methods will be implemented into a publicly available software package. We believe that the proposed research is very timely and has the potential to be of great public health importance through direct application to autism and schizophrenia, and more broadly to other psychiatric diseases.
描述(申请人提供):大规模并行测序技术的巨大进步使研究人员能够以快速和具有成本效益的方式在全基因组范围内获得精确到单碱基分辨率的遗传信息。尽管在数据生成方面取得了这些进展,但分析和解释这些数据仍然非常具有挑战性。由此产生的数据集是高维的,非常稀疏,有数百万个遗传变异,其中绝大多数在种群中是罕见的。识别感兴趣区域中的许多遗传变异中的哪些是真正的因果变异是非常困难的。事实上,尽管在全基因组关联研究中确定强有力的关联方面取得了巨大的进展,但绝大多数基因组关联研究的潜在因果变异是未知的。识别潜在的因果变异的问题对于理解精确的生物学机制是至关重要的。虽然实验功能研究是金标准,但它们昂贵且难以对大量变体实施。在这里,我们建议开发最先进和强大的统计方法,将全基因组功能注释数据与来自自闭症和精神分裂症的全外显子组测序和GWAS研究的大量个体的遗传数据相结合,以帮助我们在特定感兴趣基因座发生的丰富自然变异中识别真正的因果变异。拟议的统计方法将纳入一个可供公众查阅的软件包。我们相信,拟议的研究是非常及时的,通过直接应用于自闭症和精神分裂症,以及更广泛地应用于其他精神疾病,有可能对公共卫生产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Iuliana Ionita其他文献
Iuliana Ionita的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Iuliana Ionita', 18)}}的其他基金
Multi-omics approaches for gene discovery in Alzheimer's Disease.
阿尔茨海默病基因发现的多组学方法。
- 批准号:
10201909 - 财政年份:2021
- 资助金额:
$ 40.84万 - 项目类别:
The 'Career MODE' Program: Careers through Mentoring and training in Omics and Data for Early-stage investigators
“职业模式”计划:通过为早期研究人员提供组学和数据方面的指导和培训来实现职业生涯
- 批准号:
10670931 - 财政年份:2021
- 资助金额:
$ 40.84万 - 项目类别:
Integrative methods for the identification of causal variants in mental disorder
识别精神障碍因果变异的综合方法
- 批准号:
9262282 - 财政年份:2016
- 资助金额:
$ 40.84万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8842480 - 财政年份:2012
- 资助金额:
$ 40.84万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
9923466 - 财政年份:2012
- 资助金额:
$ 40.84万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8451366 - 财政年份:2012
- 资助金额:
$ 40.84万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8303934 - 财政年份:2012
- 资助金额:
$ 40.84万 - 项目类别:
Novel Statistical methods for DNA Sequencing Data, and applications to Autism.
DNA 测序数据的新统计方法及其在自闭症中的应用。
- 批准号:
8647003 - 财政年份:2012
- 资助金额:
$ 40.84万 - 项目类别:
Statistical Methods to Assess the role of rare Variants in Complex Traits.
评估罕见变异在复杂性状中的作用的统计方法。
- 批准号:
8127996 - 财政年份:2010
- 资助金额:
$ 40.84万 - 项目类别:
Statistical Methods to Assess the role of rare Variants in Complex Traits.
评估罕见变异在复杂性状中的作用的统计方法。
- 批准号:
7978886 - 财政年份:2010
- 资助金额:
$ 40.84万 - 项目类别:
相似海外基金
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Continuing Grant
CAREER: Creating Tough, Sustainable Materials Using Fracture Size-Effects and Architecture
职业:利用断裂尺寸效应和架构创造坚韧、可持续的材料
- 批准号:
2339197 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Standard Grant
Travel: Student Travel Support for the 51st International Symposium on Computer Architecture (ISCA)
旅行:第 51 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
2409279 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Standard Grant
Understanding Architecture Hierarchy of Polymer Networks to Control Mechanical Responses
了解聚合物网络的架构层次结构以控制机械响应
- 批准号:
2419386 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Standard Grant
I-Corps: Highly Scalable Differential Power Processing Architecture
I-Corps:高度可扩展的差分电源处理架构
- 批准号:
2348571 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Standard Grant
Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
- 批准号:
2904511 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Studentship
The architecture and evolution of host control in a microbial symbiosis
微生物共生中宿主控制的结构和进化
- 批准号:
BB/X014657/1 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Research Grant
RACCTURK: Rock-cut Architecture and Christian Communities in Turkey, from Antiquity to 1923
RACCTURK:土耳其的岩石建筑和基督教社区,从古代到 1923 年
- 批准号:
EP/Y028120/1 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Bio-Inspired Surface Design for High Performance Mechanical Tracking Solar Collection Skins in Architecture
NSF Convergence Accelerator Track M:建筑中高性能机械跟踪太阳能收集表皮的仿生表面设计
- 批准号:
2344424 - 财政年份:2024
- 资助金额:
$ 40.84万 - 项目类别:
Standard Grant














{{item.name}}会员




