Mechanosensory feature extraction for directed motor control
用于定向运动控制的机械感觉特征提取
基本信息
- 批准号:10202742
- 负责人:
- 金额:$ 35.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAuditoryAxonBehaviorBehavioralBiological ModelsBrainBrain regionCalciumCell physiologyCellsCharacteristicsCodeComplementComputational algorithmCouplingCuesDataDependenceDiseaseDistalDrosophila genusElectrophysiology (science)Environmental WindFailureForce of GravityFrequenciesGenesGoalsHeadHealthHumanImageIndividualLateralLeftLegLinkLobeMeasuresMechanicsMembraneMental disordersMethodsMotorMotor NeuronsMovementNerveNeuronsOdorsOpticsOrganOrganismPatternPhenotypePhysiologyPopulationPostural adjustmentsProcessPropertySensorySideSignal TransductionStimulusSynapsesSystemTestingTherapeuticTouch sensationWalkingWhole-Cell RecordingsWorkbehavior measurementexperimental studyextracellularfeature extractionflexibilityflyhigh dimensionalityimaging studyimprovedin vivoin vivo calcium imaginginnovationinsightmechanical forcemotor controlnervous system disorderneural circuitneuronal cell bodypostsynapticpostsynaptic neuronsrelating to nervous systemresponsesensorsensory stimulussomatosensorysoundspatiotemporaltemporal measurementvibrationvoltage
项目摘要
Summary
This proposal addresses two fundamental questions:
(1) How do neurons extract features of mechanosensory stimuli that are relevant for motor control?
(2) How do central circuits create a flexible linkage between mechanosensory stimuli and behavior?
These questions are relevant to human health because sensory processing and sensory-motor integration are disrupted in
many neurological and psychiatric disorders. However, sensory processing and sensory-motor integration are not fully
understood at the level of cellular mechanisms – i.e., at the level of neural connectivity, cellular physiology, and synaptic
physiology. This level of mechanistic explanation is important to understanding why disease-linked genes produce their
characteristic phenotypes. It is also important to developing better therapeutics. As a model system for gaining
mechanistic insight into these brain functions, this project will focus on the largest mechanosensory organ in Drosophila
(Johnston's organ) and the circuits and behaviors downstream from this organ. Johnston's organ neurons (JONs) encode
deflections of the distal antennal segment. These deflections can result from an object touching the antenna, wind,
postural changes, or sound. In essence, therefore, Johnston's organ has a range of functions – somatosensory, vestibular,
and auditory. Different JON stimuli elicit different behaviors. These behaviors are variable and context-dependent (not
stereotyped action patterns) and so we can use this system to study flexibility in sensory-motor coupling. Our first aim is
to determine how JONs encode mechanical stimuli. To test the hypothesis that JONs are highly specialized for specific
spatiotemporal features of antennal deflections, we will use a combination of in vivo calcium imaging, electrophysiology,
and voltage imaging. Second, we will use in vivo whole cell recordings to test the hypothesis that central neurons
postsynaptic to JONs can extract specific frequencies of antennal vibrations by virtue of their intrinsic electrical bandpass
filtering characteristics. Third, we will perform in vivo whole cell recordings to investigate how mechanosensory signals
are encoded at the level of third-order neurons, and how these signals are relayed to motor control centers. We
hypothesize that wind and sound stimuli will be encoded by largely distinct neural channels. Fourth, we will combine
whole-cell recording with simultaneous behavioral measurements to determine how mechanosensory cues from JONs
steer walking direction in a context-dependent manner. We hypothesize that heading direction cues and context cues will
converge at the level of descending motor control neurons that project to the ventral nerve cord. As a whole, this work
will provide new insights into the neural computations that occur in mechanosensory processing and mechanosensory-
motor integration, as well as the cellular mechanisms that implement these computations.
总结
这项建议涉及两个基本问题:
(1)神经元如何提取与运动控制相关的机械感觉刺激的特征?
(2)中央回路如何在机械感觉刺激和行为之间建立灵活的联系?
这些问题与人类健康有关,因为感觉处理和感觉-运动整合被破坏,
许多神经和精神疾病。然而,感觉加工和感觉-运动整合并不完全,
在细胞机制的水平上理解-即,在神经连接、细胞生理学和突触的水平上,
physiology.这一层次的机械解释对于理解为什么疾病相关基因产生它们的
特征表型这对开发更好的治疗方法也很重要。作为一个模型系统,
为了深入了解这些大脑功能,该项目将重点关注果蝇中最大的机械感觉器官
(约翰斯顿的器官)和这个器官下游的回路和行为。约翰斯顿器官神经元(容斯)编码
远触角节的偏转。这些偏转可能是由于物体接触天线,风,
姿势变化或声音。因此,从本质上讲,约翰斯顿的器官具有一系列功能--躯体感觉、前庭、
和听觉。不同的JON刺激引发不同的行为。这些行为是可变的,并依赖于上下文(不
刻板的动作模式),因此我们可以使用这个系统来研究感觉-运动耦合中的灵活性。我们的首要目标是
来确定容斯如何编码机械刺激。为了验证容斯高度专业化的假设,
触角偏转的时空特征,我们将使用体内钙成像,电生理学,
和电压成像。其次,我们将使用体内全细胞记录来检验中枢神经元
突触后的容斯可以凭借其固有的电带通提取特定频率的触角振动
滤波特性第三,我们将在体内进行全细胞记录,以研究机械感觉信号如何
是在三级神经元的水平上编码的,以及这些信号是如何传递到运动控制中心的。我们
假设风和声音刺激将由很大程度上不同的神经通道编码。第四,我们将联合收割机
全细胞记录与同步行为测量,以确定来自容斯的机械感觉线索
以上下文相关方式操纵行走方向。我们假设航向线索和语境线索
在投射到腹神经索的下行运动控制神经元的水平上会聚。总体而言,这项工作
将为机械感觉处理和机械感觉中发生的神经计算提供新的见解-
运动整合,以及实现这些计算的细胞机制。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Mechanosensory Circuit that Mixes Opponent Channels to Produce Selectivity for Complex Stimulus Features.
- DOI:10.1016/j.neuron.2016.09.059
- 发表时间:2016-11-23
- 期刊:
- 影响因子:16.2
- 作者:Chang AEB;Vaughan AG;Wilson RI
- 通讯作者:Wilson RI
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Wilson其他文献
Rachel Wilson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Wilson', 18)}}的其他基金
Project 4: Neural Basis of Behavioral Sequences
项目 4:行为序列的神经基础
- 批准号:
10202764 - 财政年份:2017
- 资助金额:
$ 35.62万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8039809 - 财政年份:2006
- 资助金额:
$ 35.62万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7771723 - 财政年份:2006
- 资助金额:
$ 35.62万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8617832 - 财政年份:2006
- 资助金额:
$ 35.62万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7084882 - 财政年份:2006
- 资助金额:
$ 35.62万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8415472 - 财政年份:2006
- 资助金额:
$ 35.62万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
7367079 - 财政年份:2006
- 资助金额:
$ 35.62万 - 项目类别:
Synaptic and circuit mechanisms of olfactory processing
嗅觉处理的突触和电路机制
- 批准号:
8220715 - 财政年份:2006
- 资助金额:
$ 35.62万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 35.62万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 35.62万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 35.62万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 35.62万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 35.62万 - 项目类别:
Training Grant